Biological Surface Effects of Metallic Nanomaterials for Applications in Assembly and Catalysis

纳米材料 纳米技术 生物分子 纳米颗粒 氨基酸 化学 材料科学 组合化学 生物化学
作者
Manish Sethi,Dennis B. Pacardo,Marc R. Knecht
出处
期刊:Langmuir [American Chemical Society]
卷期号:26 (19): 15121-15134 被引量:18
标识
DOI:10.1021/la100034q
摘要

Recent experimental evidence has suggested that bioinspired techniques represent promising avenues toward the production of functional nanomaterials that possess a high degree of activity. These materials are prepared under synthetically simple and efficient conditions, thus making them attractive alternatives to many traditional methods that employ hazardous and harsh conditions. Many biomimetic methods employ peptide and amino acid binding events on the surfaces of nanostructures to generate materials that are stable in solution. The basis of both the stability and activity of these materials is likely to be controlled by the biotic/abiotic interface, which is mediated by the bioligand binding process. Unfortunately, most readily available techniques are unable to be used to study this intrinsic process; however, very recent studies have begun to shed light on this important event. In this feature article, an overview of the understanding of peptide and amino acid binding events to nanomaterials and how these motifs can be exploited for activities in nanoparticle assembly and catalytic reactivity is discussed. From both 2D surface studies and computational modeling analyses, different biomolecule binding characteristics have been elucidated. These results indicate that the amino acid sequence and peptide secondary structure play important roles in the binding capability. Furthermore, these studies suggest that the peptides are able to form specific patterns and motifs once bound to the nanoparticle surface. This attribute could affect the nanoparticle electronics and can play a significant role in their activities to generate functional materials. From these binding motifs, the ability of reagents to interact with the metallic surface is possible, thus affecting many of the properties of these materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wz87发布了新的文献求助10
1秒前
心灵美的修洁完成签到 ,获得积分10
1秒前
隐形傲霜完成签到 ,获得积分10
6秒前
无敌茉莉蜜茶完成签到,获得积分10
14秒前
科研通AI5应助自然代萱采纳,获得10
14秒前
16秒前
ada完成签到,获得积分20
16秒前
17秒前
猪猪hero完成签到,获得积分10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
calemolet应助科研通管家采纳,获得10
18秒前
18秒前
动漫大师发布了新的文献求助10
19秒前
小张z完成签到,获得积分10
20秒前
科研通AI5应助猪猪hero采纳,获得10
22秒前
gujiguji发布了新的文献求助10
22秒前
wu完成签到,获得积分10
23秒前
25秒前
ljx完成签到 ,获得积分10
28秒前
gujiguji完成签到,获得积分10
30秒前
勤奋向真发布了新的文献求助10
32秒前
jxp完成签到,获得积分10
33秒前
幸福遥完成签到,获得积分10
35秒前
是白鸽啊完成签到 ,获得积分10
36秒前
38秒前
称心曼岚完成签到 ,获得积分10
42秒前
搜集达人应助Firstoronre采纳,获得30
43秒前
小全发布了新的文献求助10
43秒前
43秒前
Kidmuse完成签到,获得积分10
44秒前
舒适的天奇完成签到 ,获得积分10
44秒前
科研顺利完成签到,获得积分10
46秒前
mingjie完成签到,获得积分10
49秒前
一进实验室就犯困完成签到,获得积分10
50秒前
tunerling完成签到,获得积分10
51秒前
木木VV完成签到,获得积分10
57秒前
宋宋完成签到 ,获得积分10
57秒前
59秒前
TrungHieuPham完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549