MNIST数据库
异常检测
变压器
计算机科学
嵌入
人工智能
高斯分布
模式识别(心理学)
计算机视觉
数据挖掘
人工神经网络
工程类
电压
电气工程
物理
量子力学
作者
Pankaj Kumar Mishra,Riccardo Verk,Daniele Fornasier,Claudio Piciarelli,Gian Luca Foresti
标识
DOI:10.1109/isie45552.2021.9576231
摘要
We present a transformer-based image anomaly detection and localization network. Our proposed model is a combination of a reconstruction-based approach and patch embedding. The use of transformer networks helps preserving the spatial information of the embedded patches, which is later processed by a Gaussian mixture density network to localize the anomalous areas. In addition, we also publish BTAD, a real-world industrial anomaly dataset. Our results are compared with other state-of-the-art algorithms using publicly available datasets like MNIST and MVTec.
科研通智能强力驱动
Strongly Powered by AbleSci AI