广义线性混合模型
生命银行
混合模型
生物
广义线性模型
统计
线性模型
全基因组关联研究
遗传学
计算生物学
基因型
数学
单核苷酸多态性
基因
作者
Longda Jiang,Zhili Zheng,Hailing Fang,Jian Yang
出处
期刊:Nature Genetics
[Nature Portfolio]
日期:2021-11-01
卷期号:53 (11): 1616-1621
被引量:394
标识
DOI:10.1038/s41588-021-00954-4
摘要
Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case-control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin ), and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits.
科研通智能强力驱动
Strongly Powered by AbleSci AI