Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ

软骨发生 间充质干细胞 再生(生物学) 细胞生物学 软骨 体内 体外 组织工程 化学 脚手架 生物医学工程 生物 解剖 医学 生物技术 生物化学
作者
Liwei Fu,Pinxue Li,Junyao Zhu,Zhiyao Liao,Cangjian Gao,Hao Li,Zhen Yang,Tianyuan Zhao,Wei Chen,Peng Yu,Fuyang Cao,Chao Ning,Xiang Sui,Quanyi Guo,Yunfeng Lin,Shuyun Liu
出处
期刊:Bioactive Materials [Elsevier BV]
卷期号:9: 411-427 被引量:26
标识
DOI:10.1016/j.bioactmat.2021.07.028
摘要

Many recent studies have shown that joint-resident mesenchymal stem cells (MSCs) play a vital role in articular cartilage (AC) in situ regeneration. Specifically, synovium-derived MSCs (SMSCs), which have strong chondrogenic differentiation potential, may be the main driver of cartilage repair. However, both the insufficient number of MSCs and the lack of an ideal regenerative microenvironment in the defect area will seriously affect the regeneration of AC. Tetrahedral framework nucleic acids (tFNAs), notable novel nanomaterials, are considered prospective biological regulators in biomedical engineering. Here, we aimed to explore whether tFNAs have positive effects on AC in situ regeneration and to investigate the related mechanism. The results of in vitro experiments showed that the proliferation and migration of SMSCs were significantly enhanced by tFNAs. In addition, tFNAs, which were added to chondrogenic induction medium, were shown to promote the chondrogenic capacity of SMSCs by increasing the phosphorylation of Smad2/3. In animal models, the injection of tFNAs improved the therapeutic outcome of cartilage defects compared with that of the control treatments without tFNAs. In conclusion, this is the first report to demonstrate that tFNAs can promote the chondrogenic differentiation of SMSCs in vitro and enhance AC regeneration in vivo, indicating that tFNAs may become a promising therapeutic for AC regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIAOBAI完成签到,获得积分10
刚刚
Ava应助哈哈采纳,获得10
1秒前
5秒前
阿里山完成签到,获得积分10
5秒前
9秒前
momo完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
13秒前
none完成签到,获得积分20
14秒前
16秒前
追逐的疯完成签到,获得积分10
16秒前
LL发布了新的文献求助10
17秒前
19秒前
郭宇发布了新的文献求助10
20秒前
慕青应助哈哈采纳,获得10
22秒前
CipherSage应助1111111111111采纳,获得10
23秒前
Serena发布了新的文献求助10
24秒前
善学以致用应助mama采纳,获得30
24秒前
花开富贵完成签到,获得积分20
25秒前
31秒前
32秒前
小杨完成签到 ,获得积分10
33秒前
平常元灵完成签到,获得积分10
34秒前
36秒前
小白加油完成签到 ,获得积分10
37秒前
38秒前
39秒前
Rw发布了新的文献求助10
39秒前
41秒前
43秒前
mama发布了新的文献求助30
43秒前
李铛铛发布了新的文献求助10
46秒前
潘果果完成签到,获得积分10
46秒前
karcorl发布了新的文献求助10
47秒前
文献看不懂应助zone采纳,获得10
47秒前
48秒前
Rw完成签到,获得积分20
49秒前
51秒前
51秒前
小蘑菇应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976