Multidimensional molecular differences between artificial cultivated and wild Artemisia rupestris L. based on metabolomics–transcriptomics integration strategy

代谢组学 生物 绿原酸 代谢组 经济短缺 咖啡酸 植物 转录组 分子标记 基因 生物化学 基因表达 生物信息学 语言学 哲学 政府(语言学) 抗氧化剂
作者
Zhi Zhou,Bin Xie,Bingshu He,Chen Zhang,Lulu Chen,Zhonghua Wang,Yanhua Chen,Zeper Abliz
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:170: 113732-113732 被引量:9
标识
DOI:10.1016/j.indcrop.2021.113732
摘要

Various ecological environments affect the active ingredients and molecular content of medicinal plants. Artemisia rupestris L. is a traditional medicinal plant, and shortages of the wild resource has led to the increased use of artificial cultivated varieties. However, few investigations have studied the molecular differences between the cultivated and wild varieties in a systematic manner. In this study, two A. rupestris varieties were collected in the Altay–Fuyun region, Xinjiang, China. We used a liquid chromatography-mass spectrometry based untargeted metabolomics approach to profile the metabolome in the flower, stem, and leaf samples respectively, and simultaneously analyzed the levels of a panel of representative known metabolites in the plant. The genetic basis of these samples was explored using a de novo transcriptomics approach to investigate differentially expressed genes and their pathway annotations. The results indicated that the metabolic differences between the two varieties were mainly reflected in flavonoids and chlorogenic acid/caffeic acid derivatives. Thirty-four chemical markers, including 19 potentially new compounds, of these two structural categories were identified after validation using another batch of samples. Correlation analysis combined with quantitative real-time polymerase chain reaction revealed that six differentially expressed genes in different organs were closely correlated with 24 chemical markers. This study provides novel insight into the molecular landscape of this medicinal plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨淋沐风发布了新的文献求助10
刚刚
taoli发布了新的文献求助10
刚刚
望着夏草想念你完成签到,获得积分10
刚刚
serendipity完成签到,获得积分10
刚刚
敏敏完成签到 ,获得积分10
刚刚
puhu完成签到,获得积分10
1秒前
传奇3应助花成花采纳,获得10
1秒前
1秒前
怡然凌柏完成签到 ,获得积分10
1秒前
1秒前
儒雅沛凝发布了新的文献求助10
2秒前
唯心如意完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
BEIBEI完成签到,获得积分10
3秒前
3秒前
小二郎应助CYJ采纳,获得10
3秒前
huang发布了新的文献求助10
4秒前
gentleman完成签到,获得积分10
4秒前
沉静的安南完成签到,获得积分20
4秒前
4秒前
zhangxin完成签到,获得积分10
4秒前
hukun100完成签到,获得积分10
4秒前
hylimeng发布了新的文献求助10
4秒前
5秒前
HUIHUIA完成签到 ,获得积分10
5秒前
hanliulaixi发布了新的文献求助30
5秒前
小羊发布了新的文献求助10
5秒前
5秒前
雨淋沐风完成签到,获得积分10
6秒前
水云天发布了新的文献求助10
6秒前
MYW完成签到,获得积分10
7秒前
打打应助努力的欢欢采纳,获得10
7秒前
小平完成签到,获得积分10
8秒前
Silence发布了新的文献求助10
8秒前
Novice6354发布了新的文献求助10
9秒前
ayan发布了新的文献求助10
9秒前
10秒前
今后应助头发茂密的我采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940