Active vs. Smart Beta ETFs: Two Sides of Active Management

衡平法 业务 BETA(编程语言) 私募股权基金 被动管理 金融经济学 经济 基金基金 财务 私募股权 计算机科学 政治学 市场流动性 程序设计语言 法学
作者
Rajnish Kumar
出处
期刊:The Journal of Index Investing [Pageant Media US]
卷期号:11-12 (4-1): 25-40 被引量:1
标识
DOI:10.3905/jii.2021.1.101
摘要

This article examines the characteristics and performance of active and smart beta equity exchange traded funds (ETFs) listed in the United States since 2000. Using a sample of 95 active equity ETFs and 376 smart beta equity ETFs, the author found that as of October 30, 2020, only 20% of active equity ETFs and 15% of smart beta equity ETFs performed better (in regard to return) than the S&P500 index (market) during the past five-year period. Using Fama–French–Carhart six-factor return attribution analysis, the author finds that more than 20% of smart beta equity ETFs and 10% of active equity ETFs have significant alpha at the 10% level of confidence after controlling for all Fama–French–Carhart factor returns. The excess market return factor is significant in all variants of return attribution analysis. All return attribution analyses reveal that the value investment category and the small-cap size category of both active and smart beta equity ETFs have 100% exposure to respective factor returns. There is significant scope for active and smart beta equity ETF fund managers to enhance the security selection process and create a better factor tilting strategy, respectively. TOPICS:Exchange-traded funds and applications, factor-based models, statistical methods, performance measurement Key Findings ▪ Twenty percent of smart beta equity exchange traded funds (ETFs) and 10% of active equity ETFs have significant alpha at the 10% level of confidence after controlling for all Fama–French–Carhart factor returns. The excess market return factor is significant in all variants of return attribution analysis. ▪ Fund managers of smart beta equity ETFs need to create a better factor tilted strategy to gain maximum exposure to intended factors. ▪ Fund managers of active equity ETFs should focus on a better security selection process to maximize alpha, that is, minimize market and other known factor exposures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
SYLH应助波酱采纳,获得10
刚刚
Auston_zhong应助自然的山柏采纳,获得10
刚刚
Alicyclobacillus完成签到,获得积分10
1秒前
青衫发布了新的文献求助10
1秒前
ZCY发布了新的文献求助10
1秒前
迷路冰巧发布了新的文献求助10
2秒前
2秒前
3秒前
桐桐应助坦率秋玲采纳,获得10
3秒前
Akim应助阳光的雁山采纳,获得10
5秒前
xxaqs完成签到,获得积分10
5秒前
5秒前
阔达的语海关注了科研通微信公众号
6秒前
ZHT完成签到,获得积分10
6秒前
Sunny完成签到,获得积分10
7秒前
momo发布了新的文献求助10
7秒前
任梓宁应助不安的访烟采纳,获得20
8秒前
SYLH应助斯文以蓝采纳,获得10
9秒前
清新的宛丝完成签到,获得积分10
9秒前
9秒前
9秒前
赘婿应助贪玩绿草采纳,获得10
9秒前
跳跃鸽子发布了新的文献求助10
10秒前
11秒前
无情的冰香完成签到 ,获得积分10
12秒前
王宇杰完成签到,获得积分10
12秒前
SciGPT应助龙泪个萌乃采纳,获得10
12秒前
13秒前
13秒前
wei关闭了wei文献求助
14秒前
腿腿完成签到,获得积分10
15秒前
shilin0822完成签到,获得积分10
16秒前
16秒前
乐乐应助青衫采纳,获得10
16秒前
18秒前
bz完成签到,获得积分10
18秒前
无花果应助大道要熬采纳,获得10
18秒前
18秒前
19秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905694
求助须知:如何正确求助?哪些是违规求助? 3450949
关于积分的说明 10863072
捐赠科研通 3176342
什么是DOI,文献DOI怎么找? 1754814
邀请新用户注册赠送积分活动 848456
科研通“疑难数据库(出版商)”最低求助积分说明 791036