已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification

连接体 计算机科学 判别式 图形 深度学习 人工智能 图嵌入 卷积神经网络 功能磁共振成像 模式识别(心理学) 自编码 嵌入 特征学习 机器学习 理论计算机科学 神经科学 功能连接 心理学
作者
Fuad Noman,Chee‐Ming Ting,Hakmook Kang,Raphaël C.‐W. Phan,Hernando Ombao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1644-1655 被引量:48
标识
DOI:10.1109/jbhi.2024.3351177
摘要

Brain functional connectivity (FC) networks inferred from functional magnetic resonance imaging (fMRI) have shown altered or aberrant brain functional connectome in various neuropsychiatric disorders. Recent application of deep neural networks to connectome-based classification mostly relies on traditional convolutional neural networks (CNNs) using input FCs on a regular Euclidean grid to learn spatial maps of brain networks neglecting the topological information of the brain networks, leading to potentially sub-optimal performance in brain disorder identification. We propose a novel graph deep learning framework that leverages non-Euclidean information inherent in the graph structure for classifying brain networks in major depressive disorder (MDD). We introduce a novel graph autoencoder (GAE) architecture, built upon graph convolutional networks (GCNs), to embed the topological structure and node content of large fMRI networks into low-dimensional representations. For constructing the brain networks, we employ the Ledoit-Wolf (LDW) shrinkage method to efficiently estimate high-dimensional FC metrics from fMRI data. We explore both supervised and unsupervised techniques for graph embedding learning. The resulting embeddings serve as feature inputs for a deep fully-connected neural network (FCNN) to distinguish MDD from healthy controls (HCs). Evaluating our model on resting-state fMRI MDD dataset, we observe that the GAE-FCNN outperforms several state-of-the-art methods for brain connectome classification, achieving the highest accuracy when using LDW-FC edges as node features. The graph embeddings of fMRI FC networks also reveal significant group differences between MDD and HCs. Our framework demonstrates the feasibility of learning graph embeddings from brain networks, providing valuable discriminative information for diagnosing brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助贪玩梦山采纳,获得10
2秒前
我爱行楷完成签到,获得积分10
2秒前
3秒前
Sparrow0011完成签到,获得积分20
5秒前
5秒前
李爱国应助嗯哼采纳,获得10
7秒前
YAYA完成签到,获得积分10
8秒前
rrrrrrry发布了新的文献求助10
8秒前
可乐发布了新的文献求助10
9秒前
13秒前
14秒前
Yikao完成签到 ,获得积分10
15秒前
大瓜给大瓜的求助进行了留言
17秒前
月Y发布了新的文献求助30
18秒前
归尘应助HGBG2000采纳,获得10
22秒前
asdwe172009完成签到 ,获得积分10
25秒前
26秒前
旺仔发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
30秒前
33秒前
35秒前
39秒前
39秒前
40秒前
42秒前
43秒前
朱金雨完成签到 ,获得积分10
43秒前
44秒前
囡囡发布了新的文献求助10
46秒前
46秒前
mxh发布了新的文献求助10
48秒前
48秒前
50秒前
CodeCraft应助瘦瘦大白采纳,获得10
51秒前
Ykaor完成签到 ,获得积分10
51秒前
52秒前
53秒前
53秒前
汉堡包应助伶俐的高烽采纳,获得10
54秒前
守护星星发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126