钙钛矿(结构)
磁滞
原子层沉积
材料科学
氧化锡
能量转换效率
基质(水族馆)
锡
卤化物
化学工程
水蒸气
电导率
图层(电子)
纳米技术
光电子学
物理
化学
无机化学
物理化学
兴奋剂
工程类
有机化学
冶金
地质学
量子力学
海洋学
作者
Changlei Wang,Lei Guan,Dewei Zhao,Yue Yu,Corey R. Grice,Zhaoning Song,Rasha A. Awni,Jing Chen,Jianbo Wang,Xingzhong Zhao,Yanfa Yan
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2017-08-21
卷期号:2 (9): 2118-2124
被引量:166
标识
DOI:10.1021/acsenergylett.7b00644
摘要
Tin oxide (SnO2) electron selective layers (ESLs) processed by low-temperature plasma-enhanced atomic layer deposition (PEALD) hold promise for fabricating lightweight and efficient flexible lead halide perovskite solar cells (PVSCs). However, the as-synthesized SnO2 ESLs typically lead to flexible PVSCs with lower open-circuit voltage (VOC) and fill factor (FF) as well as a higher degree of current density–voltage (J–V) hysteresis, compared to PVSCs fabricated on rigid substrates. Here, we report that facile water vapor treatment of PEALD-synthesized SnO2 ESLs can effectively improve the VOC and FF while reducing the degree of J–V hysteresis. The improvement in device performance is mainly attributed to the improved conductivity and electrical mobility of SnO2 ESLs enabled by water vapor treatment. With such treatment, our best flexible PVSC fabricated on a commercial substrate shows a power conversion efficiency of 18.36 (17.12)% when measured under a reverse (forward) voltage scan and a stabilized efficiency of 17.08%, which is the highest reported efficiency for flexible PVSCs with the regular structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI