A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images

阶段(地层学) 超声波 对比度(视觉) 放射科 超声造影 计算机科学 医学 人工智能 生物 古生物学
作者
Le‐Hang Guo,Dan Wang,Yiyi Qian,Zheng Xiao,Chong-Ke Zhao,Xiaolong Li,Xiao‐Wan Bo,Wenwen Yue,Qi Zhang,Jun Shi,Hui‐Xiong Xu
出处
期刊:Clinical Hemorheology and Microcirculation [IOS Press]
卷期号:69 (3): 343-354 被引量:91
标识
DOI:10.3233/ch-170275
摘要

OBJECTIVE:With the fast development of artificial intelligence techniques, we proposed a novel two-stage multi-view learning framework for the contrast-enhanced ultrasound (CEUS) based computer-aided diagnosis for liver tumors, which adopted only three typical CEUS images selected from the arterial phase, portal venous phase and late phase. MATERIALS AND METHODS:In the first stage, the deep canonical correlation analysis (DCCA) was performed on three image pairs between the arterial and portal venous phases, arterial and delayed phases, and portal venous and delayed phases respectively, which then generated total six-view features. While in the second stage, these multi-view features were then fed to a multiple kernel learning (MKL) based classifier to further promote the diagnosis result. Two MKL classification algorithms were evaluated in this MKL-based classification framework. We evaluated proposed DCCA-MKL framework on 93 lesions (47 malignant cancers vs. 46 benign tumors). RESULTS:The proposed DCCA-MKL framework achieved the mean classification accuracy, sensitivity, specificity, Youden index, false positive rate, and false negative rate of 90.41 ± 5.80%, 93.56 ± 5.90%, 86.89 ± 9.38%, 79.44 ± 11.83%, 13.11 ± 9.38% and 6.44 ± 5.90%, respectively, by soft margin MKL classifier. CONCLUSION:The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers. Moreover, it is also proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed DCCA-MKL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
猪猪给猪猪的求助进行了留言
2秒前
2秒前
2秒前
3秒前
4秒前
Akim应助勤劳的身影采纳,获得10
4秒前
spike发布了新的文献求助10
4秒前
Akim应助luckily采纳,获得10
5秒前
光亮的莺发布了新的文献求助10
7秒前
冷静无心发布了新的文献求助10
7秒前
肖恩发布了新的文献求助10
8秒前
123321发布了新的文献求助10
8秒前
天天快乐应助乐鲨采纳,获得10
9秒前
insissst完成签到,获得积分10
10秒前
13秒前
15秒前
123完成签到,获得积分10
15秒前
Xiao乔121发布了新的文献求助30
16秒前
脑洞疼应助冷静无心采纳,获得10
16秒前
17秒前
18秒前
18秒前
19秒前
19秒前
SDNUDRUG发布了新的文献求助10
20秒前
爆米花应助晓生采纳,获得10
21秒前
科研通AI2S应助我爱Chem采纳,获得10
22秒前
8R60d8应助凌康采纳,获得10
22秒前
整齐星月发布了新的文献求助10
22秒前
HQW发布了新的文献求助10
23秒前
栗子发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
萨尔莫斯发布了新的文献求助10
26秒前
科研通AI5应助hky采纳,获得10
27秒前
28秒前
28秒前
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800658
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328098
捐赠科研通 3062460
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627