多目标优化
帕累托原理
计算机科学
分段
数学优化
数学
数学分析
作者
Dawei Zhan,Yuansheng Cheng,Jun Li
标识
DOI:10.1109/tevc.2017.2697503
摘要
The existing multiobjective expected improvement (EI) criteria are often computationally expensive because they are calculated using multivariate piecewise integrations, the number of which increases exponentially with the number of objectives. In order to solve this problem, this paper proposes a new approach to develop cheap-to-evaluate multiobjective EI criteria based on the proposed EI matrix (EIM). The elements in the EIM are the single-objective EIs that the studying point has beyond each Pareto front approximation point in each objective. Three multiobjective criteria are developed by combining the elements in the EIM into scalar functions in three different ways. These proposed multiobjective criteria are calculated using only 1-D integrations, whose number increases linearly with respect to the number of objectives. Moreover, all the three criteria are derived in closed form expressions, thus are significantly cheaper to evaluate than the state-of-the-art multiobjective criteria. The efficiencies of the proposed criteria are validated through 12 test problems. Besides the computational advantage, the proposed multiobjective EI criteria also show competitive abilities in approximating the Pareto fronts of the chosen test problems compared against the state-of-the-art multiobjective EI criteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI