催化作用
氢
吸附
电合成
制氢
电化学
离解(化学)
材料科学
化学工程
氧气
惰性
金属
无机化学
分解水
化学
过氧化氢
多相催化
氧化还原
光化学
电子转移
纳米技术
速率决定步骤
氨生产
活动站点
钼酸盐
格子(音乐)
激进的
惰性气体
可逆氢电极
作者
Nannan Hou,Ke Ye,Mingzhou Wang,Jun Wang,Zhixiang She,Junsheng Song,Jiankang Zheng,Guozhen Zhang,Yu Zhou,Haitao Liu,Qing Zhu,Yang Mu
标识
DOI:10.1002/anie.202519411
摘要
Abstract Electrochemical H 2 O 2 production through the two‐electron oxygen reduction reaction (2e − ORR) represents a transformative route for sustainable and decentralized chemical synthesis. Nevertheless, conventional catalysts struggle to achieve optimal intermediates adsorption and efficient proton‐coupled electron transfer (PCET) under neutral conditions, as the sluggish dissociation of water imposes a severe kinetic bottleneck. Herein, we introduce a lattice hydrogen engineering strategy that confers unprecedented catalytic functionality to traditionally inert metal oxides. Through precise hydrogen implantation into the TiO 2 lattice, we establish Ti‐O 2C ‐H active centers—a dual‐function motif that simultaneously achieves near‐ideal OOH* adsorption (positioned at the Sabatier volcano apex) and intrinsic proton reservoir capability. This atomically engineered H‐TiO 2 catalyst delivers > 95% H 2 O 2 selectivity, operating stably for over 100 h at an industrial current density of 200 mA cm −2 . This robust operation yields a high H 2 O 2 production rate of 13,968 mmol g −1 h −1 with an energy efficiency of 41.3%. Crucially, the universality of lattice hydrogen engineering is demonstrated through the activation of WO 3 , MoO 3 , and Nb 2 O 5 , yielding comparable performance enhancements for neutral 2e − ORR. By unlocking metal oxides as a robust catalyst platform for H 2 O 2 electrosynthesis, this work establishes a scalable pathway toward scalable, green and cost‐effective peroxide production.
科研通智能强力驱动
Strongly Powered by AbleSci AI