A machine learning-based algorithm for estimating the original corneal curvature based on corneal topography after orthokeratology

角膜塑形术 角膜地形图 数学 算法 人工智能 曲率 验光服务 医学 计算机科学 眼科 角膜 几何学
作者
Yujing Li,Heng Zhao,Yuzhuo Fan,Jie Hu,Siying Li,Kai Wang,Mingwei Zhao
出处
期刊:Contact Lens and Anterior Eye [Elsevier BV]
卷期号:46 (4): 101862-101862
标识
DOI:10.1016/j.clae.2023.101862
摘要

Objective To estimate the original corneal curvature after orthokeratology by applying a machine learning-based algorithm. Methods A total of 497 right eyes of 497 patients undergoing overnight orthokeratology for myopia for more than 1 year were enrolled in this retrospective study. All patients were fitted with lenses from Paragon CRT. Corneal topography was obtained by a Sirius corneal topography system (CSO, Italy). Original flat K (K1) and original steep K (K2) were set as the targets of calculation. The importance of each variable was explored by Fisher’s criterion. Two machine learning models were established to allow adaptation to more situations. Bagging Tree, Gaussian process, support vector machine (SVM), and decision tree were used for prediction. Results K2 after one year of orthokeratology (K2after) was most important in the prediction of K1 and K2. Bagging Tree performed best in both models 1 and 2 for K1 prediction (R = 0.812, RMSE = 0.855 in model 1 and R = 0.812, RMSE = 0.858 in model 2) and K2 prediction (R = 0.831, RMSE = 0.898 in model 1 and R = 0.837, RMSE = 0.888 in model 2). In model 1, the difference was 0.006 ± 1.34 D (p = 0.93) between the predictive value of K1 and the true value of K1 (K1before) and was 0.005 ± 1.51 D(p = 0.94) between the predictive value of K2 and the true value of K2 (K2before). In model 2, the difference was −0.056 ± 1.75 D (p = 0.59) between the predictive value of K1 and K1before and was 0.017 ± 2.01 D(p = 0.88) between the predictive value of K2 and K2before. Conclusion Bagging Tree performed best in predicting K1 and K2. Machine learning can be applied to predict the corneal curvature for those who cannot provide the initial corneal parameters in the outpatient clinic, providing a relatively certain degree of reference for the refitting of the Ortho-k lenses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的雨柏完成签到 ,获得积分10
刚刚
feihua1完成签到 ,获得积分10
2秒前
hj发布了新的文献求助10
4秒前
hj完成签到,获得积分10
15秒前
稳重乌冬面完成签到 ,获得积分10
15秒前
慕青应助H-kevin.采纳,获得10
17秒前
阿健完成签到,获得积分10
22秒前
25秒前
不想洗碗完成签到 ,获得积分10
26秒前
xsc完成签到,获得积分10
27秒前
大聪明完成签到,获得积分10
28秒前
僦是卜够完成签到 ,获得积分10
31秒前
33秒前
许鸽完成签到,获得积分10
35秒前
marc107完成签到,获得积分10
43秒前
运敬完成签到 ,获得积分10
46秒前
49秒前
优雅莞完成签到,获得积分10
51秒前
封闭货车完成签到 ,获得积分10
52秒前
渔夫发布了新的文献求助10
53秒前
56秒前
Ya完成签到 ,获得积分10
57秒前
58秒前
叛逆黑洞完成签到 ,获得积分10
59秒前
chenying完成签到 ,获得积分10
59秒前
橙花完成签到 ,获得积分10
1分钟前
渔夫完成签到,获得积分20
1分钟前
芒果完成签到 ,获得积分10
1分钟前
逍遥呱呱完成签到 ,获得积分10
1分钟前
falling_learning完成签到 ,获得积分10
1分钟前
21GolDiamond完成签到,获得积分10
1分钟前
1分钟前
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
xs完成签到,获得积分10
1分钟前
1分钟前
xs发布了新的文献求助10
1分钟前
史萌完成签到,获得积分20
1分钟前
1分钟前
典雅三颜完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4112483
求助须知:如何正确求助?哪些是违规求助? 3650868
关于积分的说明 11560169
捐赠科研通 3355294
什么是DOI,文献DOI怎么找? 1843186
邀请新用户注册赠送积分活动 909298
科研通“疑难数据库(出版商)”最低求助积分说明 826209