An integrated deep neural network model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data

计算机科学 人工智能 时间序列 人工神经网络 系列(地层学) 模式识别(心理学) 深度学习 机器学习 数据挖掘 地质学 古生物学
作者
Mohammadreza Ahmadzadeh,Seyed Mehdi Zahrai,Maryam Bitaraf
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:11
标识
DOI:10.1177/14759217241239041
摘要

Introducing deep learning algorithms into the field of structural health monitoring (SHM) has contributed to the automatic extraction of damage-sensitive features, but the type and architecture of these algorithms are still in dispute. This paper proposes a hybrid deep learning framework entitled time-distributed one-dimensional convolutional neural network (1D CNN) long short-term memory (LSTM) model, which utilizes raw multisensor time histories to detect structural damages. Using a sliding window that moves along the temporal dimension, the multisensor data are first segmented into subsequences. The 1D CNN layers are simultaneously applied to each subsequence to extract damage-sensitive features from row data samples. These features are then fed into the LSTM layers to extract temporal features between subsequences. As the final step, these extracted features are classified using fully connected layers. In order to assess the performance of this model, a numerical model of a high-rise frame with nonlinear members is used. This hybrid model is assumed to identify the location of damages to this frame. In order to assess the proposed model with a real-world structure, a well-known benchmark building is employed to identify damage patterns by this deep hybrid neural network. A set of metrics related to the performance of the model is measured and evaluated. It is found that the model has an average accuracy of above 96.6% in localizing damage in the numerical structure and above 99.6% in detecting each damage pattern in the experimental building. The results indicate that the proposed model can be applied effectively to the SHM of different structural systems with different damage patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
accpeted应助酷酷含桃采纳,获得10
刚刚
hebilie发布了新的文献求助10
1秒前
1秒前
2秒前
CGBY完成签到 ,获得积分10
2秒前
3秒前
kangjie123应助zcydbttj2011采纳,获得10
3秒前
orixero应助creepppp采纳,获得10
3秒前
4秒前
xinlei2023发布了新的文献求助10
4秒前
5秒前
5秒前
言言发布了新的文献求助10
5秒前
joasuka完成签到,获得积分20
6秒前
田様应助科研通管家采纳,获得10
7秒前
jin发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科目三应助噜噜噜采纳,获得10
8秒前
8秒前
8秒前
8秒前
冰魂应助科研通管家采纳,获得20
8秒前
8秒前
红豆完成签到 ,获得积分10
8秒前
枫糖叶落完成签到,获得积分10
9秒前
daydreamer完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
大模型应助斯人采纳,获得10
10秒前
FatheadCarp发布了新的文献求助10
11秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432