亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards robust classification of multi-view remote sensing images with partial data availability

遥感 计算机科学 地质学
作者
Maofan Zhao,Qingyan Meng,Yan Wang,Linlin Zhang,Xinli Hu,Wenxu Shi
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:306: 114112-114112 被引量:2
标识
DOI:10.1016/j.rse.2024.114112
摘要

Utilizing remote sensing to monitor and obtain the land use information is crucial for sustainable development goals (SDGs), including sustainable agriculture, urbanization processes, land reclamation, etc. The development of remote sensing big data and deep learning has greatly promoted the use of multi-source images to understand land use. However, in practical applications, missing data often occurs due to high cost and environmental limitation. Therefore, we propose a framework which can towards robust classification of multi-view remote sensing images with partial data availability. First, we construct a student model and teacher model mutual learning framework. In particular, we promote the consistency of student model and teacher model which enhances robustness under missing view and further improves performance under complete views. Second, we propose a parameter-free channel & spatial attention (PFCSA) module embedded in the image encoders, which allows the architecture with three encoders to balance performance and lightweight. Further, the cross-view attention fusion (CAF) module is designed to enhance the fusion of multi-view images. The experiments based on global data show that the proposed method can utilize multi-views more effectively than common fusion strategies. Our method also ensures robustness against missing view compared to other methods. And we reveal the effectiveness of each proposed strategies. In addition, the contribution of different views and the mechanism of the model under missing view are analyzed. The proposed method in this study can be used to generate land use and its derived geographic information products on a global scale (including different natural and development regions), and further serve the realization of global SDGs. The code will be publicly available at https://github.com/mfzhao1998/multi_view_incomplete_learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN完成签到,获得积分20
8秒前
天天开心完成签到 ,获得积分10
26秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
橙子完成签到,获得积分10
51秒前
橙子发布了新的文献求助10
56秒前
柚子完成签到 ,获得积分10
58秒前
柯一一应助橙子采纳,获得10
1分钟前
科研通AI5应助橙子采纳,获得10
1分钟前
科研通AI5应助橙子采纳,获得10
1分钟前
科研通AI5应助橙子采纳,获得10
1分钟前
科研通AI5应助橙子采纳,获得10
1分钟前
Delire完成签到,获得积分10
1分钟前
领导范儿应助hqc采纳,获得10
1分钟前
1分钟前
hqc发布了新的文献求助10
1分钟前
nhh发布了新的文献求助20
1分钟前
Lain完成签到,获得积分10
2分钟前
喔喔佳佳L完成签到 ,获得积分10
3分钟前
3分钟前
Owllight发布了新的文献求助10
3分钟前
Owllight完成签到,获得积分20
4分钟前
George完成签到,获得积分10
4分钟前
汉堡包应助hqc采纳,获得10
4分钟前
4分钟前
hqc发布了新的文献求助10
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
碗碗豆喵完成签到 ,获得积分10
4分钟前
葱饼完成签到 ,获得积分10
5分钟前
点心完成签到,获得积分10
5分钟前
GRATE完成签到 ,获得积分10
5分钟前
科研通AI2S应助expoem采纳,获得10
5分钟前
科研搬运工完成签到,获得积分10
6分钟前
yuiip完成签到 ,获得积分10
6分钟前
冬去春来完成签到 ,获得积分10
7分钟前
实验品626完成签到 ,获得积分10
8分钟前
在水一方应助科研通管家采纳,获得10
8分钟前
科研通AI5应助krajicek采纳,获得10
9分钟前
Jasper应助在努力了采纳,获得30
9分钟前
9分钟前
Waymaker发布了新的文献求助10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508