Shear Strength Prediction of Slender Concrete Beams Reinforced with FRP Rebar Using Data-Driven Machine Learning Algorithms

纤维增强塑料 钢筋 马镫 结构工程 材料科学 试验数据 梁(结构) 剪切(地质) 钢筋混凝土 抗剪强度(土壤) 计算机科学 复合材料 工程类 地质学 土壤水分 程序设计语言 土壤科学
作者
Mohammad Rezaul Karim,Kamrul Islam,A. H. M. Muntasir Billah,M. Shahria Alam
出处
期刊:Journal of Composites for Construction [American Society of Civil Engineers]
卷期号:27 (2) 被引量:13
标识
DOI:10.1061/(asce)cc.1943-5614.0001280
摘要

Estimating the shear strength of a fiber-reinforced polymer (FRP)–reinforced-concrete (RC) beam is a complex task that depends on multiple design variables. The use of FRP bars has emerged as a promising alternative to diminish the corrosion problems that are associated with steel reinforcement in adverse environments; however, an accurate and reliable method of shear strength prediction is needed to ensure the economical use of materials and robust designs. Several optimized design equations are available in the literature; however, when utilizing these equations a substantial difference is observed between the predicted outcome (Vpred) and the experimental shear strength (Vexp) result. Therefore, this paper presented a novel approach toward implementing machine learning (ML) algorithms to accurately estimate the shear strength of FRP–RC beams. A large database that consisted of 302 shear test results on FRP-reinforced slender concrete beams without stirrup was collected from the literature to formulate the most efficient prediction model. The performance of each ML algorithm model was compared with the existing design provisions and models. The model interpretation was performed through feature importance analysis to explain the model output compared with a black box. The proposed data-driven ML models demonstrated a high level of accuracy and excellent performance and were superior to the existing shear strength models. In addition, a simple graphical user interface (GUI) was developed to aid practicing engineers when estimating shear strength without the need for complicated design procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjking完成签到,获得积分10
1秒前
天一完成签到,获得积分10
1秒前
1秒前
LA发布了新的文献求助10
2秒前
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得20
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
Ren完成签到,获得积分10
3秒前
二巨头完成签到,获得积分10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Kevin发布了新的文献求助10
3秒前
愉快依白完成签到,获得积分20
3秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
小石头完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助淳于黎昕采纳,获得10
4秒前
Jacky77完成签到,获得积分10
4秒前
5秒前
5秒前
111发布了新的文献求助10
5秒前
nnn完成签到,获得积分10
5秒前
周炎发布了新的文献求助10
6秒前
zzp完成签到,获得积分20
6秒前
小石头发布了新的文献求助10
6秒前
bingbing完成签到,获得积分20
6秒前
6秒前
cupid_lu发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
bingbing发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790087
求助须知:如何正确求助?哪些是违规求助? 3334781
关于积分的说明 10272224
捐赠科研通 3051278
什么是DOI,文献DOI怎么找? 1674537
邀请新用户注册赠送积分活动 802651
科研通“疑难数据库(出版商)”最低求助积分说明 760828