Comparative Analysis of Automatic Fecal Analyzer versus Direct Wet Smear Microscopy for Detecting Parasitic Infections in Stool Samples

粪便 显微镜 微生物学 生物 医学 病理
作者
Yujing Yang,Qianyun Deng,Chun-Miao Wang,F Wang,Caiping Gong,Xue Jia,Ziqing Deng,Rongchun Huang,Guanghua Li,Yunhu Zhao
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (218)
标识
DOI:10.3791/67706
摘要

With socio-economic development, the prevalence of intestinal parasitic diseases has significantly decreased year by year. However, parasitic infections remain a major public health issue globally, particularly in developing countries and regions. Timely diagnosis and treatment are crucial for controlling the spread of these diseases. The traditional Direct Wet Smear Microscopy method, while widely used, is labor-intensive, prone to contamination, and dependent on the skills of the technician. This paper introduces an Automatic Fecal Analyzer, which automates the stool sample processing, offering advantages over the traditional Direct Wet Smear Microscopy method, such as ease of operation, rapid detection, a clean and hygienic working environment, and high sensitivity and specificity, thus enhancing diagnostic efficiency and accuracy. We compared three different methods for fecal analysis: direct wet smear microscopy method, automatic fecal analyzer (AI report), and automatic fecal analyzer (user audit). The AI report uses automated image analysis and machine learning algorithms to identify components like parasites and eggs in fecal samples. This method can process a large number of samples quickly, increasing efficiency. The User Audit also uses an automatic fecal analyzer but includes an additional step of user audit. Experienced technicians review the AI report to enhance the accuracy and reliability of the results.The analyzer demonstrated a sensitivity of 84.31% for AI report and 94.12% for user audits, along with a specificity of 98.71% for AI reports and 99.69% for user audits, making it an invaluable tool for the clinical diagnosis and treatment of parasitic infections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你的母鸡完成签到 ,获得积分10
刚刚
NAN发布了新的文献求助10
1秒前
YangWenjie完成签到,获得积分10
3秒前
www发布了新的文献求助10
4秒前
czy完成签到,获得积分10
4秒前
5秒前
6秒前
西柚完成签到 ,获得积分10
7秒前
7秒前
青耕发布了新的文献求助20
7秒前
9秒前
李爱国应助www采纳,获得10
9秒前
yeye完成签到,获得积分10
10秒前
11秒前
Ywffffff发布了新的文献求助10
12秒前
英姑应助刻苦的晓蕾采纳,获得10
12秒前
量子星尘发布了新的文献求助10
15秒前
勤恳凡之完成签到,获得积分10
15秒前
玄之又玄完成签到,获得积分10
15秒前
友好凡霜发布了新的文献求助10
16秒前
小蘑菇应助打小就帅采纳,获得10
17秒前
bala发布了新的文献求助20
18秒前
19秒前
传奇3应助li采纳,获得10
20秒前
平安完成签到,获得积分10
22秒前
24秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
29秒前
29秒前
李伟发布了新的文献求助10
29秒前
SW完成签到,获得积分10
29秒前
afeiwoo完成签到,获得积分10
30秒前
娜娜完成签到,获得积分20
31秒前
yiyilan完成签到 ,获得积分20
31秒前
32秒前
躺平的洋仔完成签到,获得积分10
32秒前
杜du发布了新的文献求助10
35秒前
娜娜发布了新的文献求助10
35秒前
将将将应助年轻真好啊采纳,获得20
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254123
求助须知:如何正确求助?哪些是违规求助? 3786886
关于积分的说明 11885720
捐赠科研通 3437288
什么是DOI,文献DOI怎么找? 1886538
邀请新用户注册赠送积分活动 937680
科研通“疑难数据库(出版商)”最低求助积分说明 843382