亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-Scale Non-Adiabatic Dynamics Simulation Based on Machine Learning Hamiltonian and Force Field: The Case of Charge Transport in Monolayer MoS2

绝热过程 哈密顿量(控制论) 力场(虚构) 单层 比例(比率) 统计物理学 分子动力学 电荷(物理) 物理 计算机科学 材料科学 纳米技术 量子力学 数学 数学优化
作者
Bichuan Cao,Jiawei Dong,Zedong Wang,Linjun Wang
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:: 4907-4920
标识
DOI:10.1021/acs.jpclett.5c01037
摘要

We present an efficient and reliable large-scale non-adiabatic dynamics simulation method based on machine learning Hamiltonian and force field. The quasi-diabatic Hamiltonian network (DHNet) is trained in the Wannier basis based on well-designed translation and rotation invariant structural descriptors, which can effectively capture both local and nonlocal environmental information. Using the representative two-dimensional transition metal dichalcogenide MoS2 as an illustration, we show that density functional theory (DFT) calculations of only ten structures are sufficient to generate the training set for DHNet due to the high efficiency of Wannier analysis and orbital classification in sampling the interorbital couplings. DHNet demonstrates good transferability, thus enabling direct construction of the electronic Hamiltonian matrices for large systems. Compared with direct DFT calculations, DHNet significantly reduces the computational cost by about 5 orders of magnitude. By combining DHNet with the DeePMD machine learning force field, we successfully simulate electron transport in monolayer MoS2 with up to 3675 atoms and 13475 electronic levels by using a state-of-the-art surface hopping method. The electron mobility is calculated to be 110 cm2/(V s), which is in good agreement with the extensive experimental results in the range of 3-200 cm2/(V s) during 2013-2023. Due to the high performance, the proposed DHNet and large-scale non-adiabatic dynamics methods have great potential to be applied to study charge carrier dynamics in a wide range of material systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
荆棘鸟发布了新的文献求助10
4秒前
王强发布了新的文献求助10
4秒前
点心完成签到,获得积分10
7秒前
13秒前
烟花应助kk采纳,获得10
14秒前
等待的伟帮完成签到 ,获得积分10
14秒前
ding应助yuchi采纳,获得10
21秒前
ch完成签到 ,获得积分10
36秒前
36秒前
1分钟前
科目三应助王强采纳,获得10
1分钟前
wjhhhh0317发布了新的文献求助10
1分钟前
酷波er应助年轻的烧鹅采纳,获得10
1分钟前
英姑应助王强采纳,获得10
1分钟前
xttju2014应助王强采纳,获得10
1分钟前
bkagyin应助王强采纳,获得10
1分钟前
1分钟前
1分钟前
王胖胖完成签到,获得积分20
1分钟前
王胖胖发布了新的文献求助10
1分钟前
1分钟前
wjhhhh0317完成签到,获得积分10
1分钟前
汉堡包应助遇见馅儿饼采纳,获得10
1分钟前
2分钟前
英俊的铭应助曾经的便当采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
lcxlcx发布了新的文献求助10
3分钟前
无私的蛋挞完成签到,获得积分10
3分钟前
3分钟前
无花果应助lcxlcx采纳,获得10
3分钟前
3分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099014
求助须知:如何正确求助?哪些是违规求助? 3636583
关于积分的说明 11525642
捐赠科研通 3346382
什么是DOI,文献DOI怎么找? 1839163
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823819