亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VMKLA-UNet: vision Mamba with KAN linear attention U-Net

螳螂 计算机科学 动物 生物
作者
Cheng‐Yuan Su,Xuegang Luo,Shiqing Li,Li Chen,Juan Wang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:3
标识
DOI:10.1038/s41598-025-97397-2
摘要

In the domain of medical image segmentation, while convolutional neural networks (CNNs) and Transformer-based architectures have attained notable success, they continue to face substantial challenges. CNNs are often limited in their ability to capture long-range dependencies, while Transformer models are frequently constrained by significant computational overhead. Recently, the Vision Mamba model, combined with KAN linear attention, has emerged as a highly promising alternative. In this study, we propose a novel model for medical image segmentation, termed VMKLA-UNet. The encoder of this architecture harnesses the VMamba framework, which employs a bidirectional state-space model for global visual context modeling and positional embedding, thus enabling efficient feature extraction and representation learning. For the decoder, we introduce the MKCSA architecture, which incorporates KAN linear attention-rooted in the Mamba framework-alongside a channel-spatial attention mechanism. KAN linear attention substantially mitigates computational complexity while enhancing the model's capacity to focus on salient regions of interest, thereby facilitating efficient global context comprehension. The channel attention mechanism dynamically modulates the importance of each feature channel, accentuating critical features and bolstering the model's ability to differentiate between various tissue types or lesion areas. Concurrently, the spatial attention mechanism refines the model's focus on key regions within the image, enhancing segmentation boundary accuracy and detail resolution. This synergistic integration of channel and spatial attention mechanisms augments the model's adaptability, leading to superior segmentation performance across diverse lesion types. Extensive experiments on public datasets, including Polyp, ISIC 2017, ISIC 2018, PH2, and Synapse, demonstrate that VMKLA-UNet consistently achieves high segmentation accuracy and robustness, establishing it as a highly effective solution for medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaomiao123发布了新的文献求助20
1秒前
煮小鱼完成签到 ,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
19秒前
香蕉外套发布了新的文献求助10
23秒前
研友_VZG7GZ应助香蕉外套采纳,获得30
28秒前
脑洞疼应助miaomiao123采纳,获得10
32秒前
33秒前
白桦林泪发布了新的文献求助10
37秒前
iShine完成签到 ,获得积分10
42秒前
科研小白完成签到 ,获得积分10
46秒前
FashionBoy应助白桦林泪采纳,获得10
56秒前
忍蛙完成签到,获得积分10
59秒前
月儿完成签到 ,获得积分10
1分钟前
活力豁应助嗯哼哈哈采纳,获得10
1分钟前
1分钟前
忍蛙发布了新的文献求助10
1分钟前
万能图书馆应助亿眼万年采纳,获得10
1分钟前
1分钟前
zzjjyy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
亿眼万年发布了新的文献求助10
1分钟前
zzjjyy完成签到,获得积分10
1分钟前
1分钟前
亿眼万年完成签到,获得积分10
1分钟前
贝果发布了新的文献求助10
1分钟前
miaomiao123发布了新的文献求助10
1分钟前
在水一方应助ww采纳,获得10
1分钟前
烟花应助贝果采纳,获得10
2分钟前
miaomiao123完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
怕黑的翠绿完成签到,获得积分10
2分钟前
2分钟前
ww发布了新的文献求助10
2分钟前
聪聪忙忙应助嗯哼哈哈采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4427305
求助须知:如何正确求助?哪些是违规求助? 3905214
关于积分的说明 12137193
捐赠科研通 3551174
什么是DOI,文献DOI怎么找? 1948733
邀请新用户注册赠送积分活动 988856
科研通“疑难数据库(出版商)”最低求助积分说明 884678