Differences in predictions of marine species distribution models based on expert maps and opportunistic occurrences

物种分布 生物多样性 可转让性 分布(数学) 地理 数据质量 计算机科学 地图学 生态学 生物 机器学习 数学 栖息地 数学分析 公制(单位) 运营管理 罗伊特 经济
作者
Zhixin Zhang,Jamie M. Kass,Ákos Bede‐Fazekas,Stefano Mammola,Junmei Qu,Jorge García Molinos,Jiqi Gu,Hongwei Huang,Meng Qu,Ying Yue,Geng Qin,Qiang Lin
出处
期刊:Conservation Biology [Wiley]
标识
DOI:10.1111/cobi.70015
摘要

Species distribution models (SDMs) are important tools for assessing biodiversity change. These models require high-quality occurrence data, which are not always available. Therefore, it is increasingly important to determine how data choice affects predictions of species' ranges. Opportunistic occurrence records and expert maps are both widely used sources of species data for SDMs. However, it is unclear how SDMs based on these data differ in performance, particularly for the marine realm. We built SDMs for 233 marine fish species from 2 families with these 2 occurrence data types and compared their performances and potential distribution predictions. Opportunistic occurrences were sourced from field surveys in the South China Sea and online repositories and expert maps from the International Union for Conservation of Nature Red List database. We used generalized linear models to explore drivers of differences in prediction between the 2 model types. When projecting to distinct regions with no occurrence data, models calibrated using opportunistic occurrences performed better than those using expert maps, indicating better transferability to new environments. Differences in marine predictor values between the 2 data types accounted for the dissimilarity in model predictions, likely because expert maps included large areas with unsuitable environmental conditions. Dissimilarity levels among fish families differed, suggesting a taxonomic bias in biodiversity data between data sources. Our findings highlight the sensitivity of species distribution predictions to the choice of distributional data. Although expert maps have an important role in biodiversity modeling, we suggest researchers assess the accuracy of these maps and reduce commission errors based on knowledge of target species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧青发布了新的文献求助10
刚刚
刚刚
龙龙ff11_完成签到,获得积分10
刚刚
1秒前
很多话发布了新的文献求助10
2秒前
sakol完成签到,获得积分10
2秒前
善学以致用应助Ballas采纳,获得10
2秒前
thangxtz完成签到,获得积分10
3秒前
3秒前
如意小海豚完成签到,获得积分10
4秒前
4秒前
白色花海完成签到,获得积分10
6秒前
咖啡头发完成签到,获得积分10
6秒前
顾矜应助anlikek采纳,获得10
6秒前
7秒前
颜沛文发布了新的文献求助10
7秒前
毛毛发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
林娜琏发布了新的文献求助10
11秒前
可爱小张发布了新的文献求助10
12秒前
DouBo完成签到,获得积分10
12秒前
13秒前
14秒前
省静霞发布了新的文献求助10
14秒前
14秒前
单薄咖啡豆完成签到,获得积分10
16秒前
嘎嘎乐完成签到,获得积分10
16秒前
椰椰完成签到,获得积分10
16秒前
kaixin发布了新的文献求助10
16秒前
科研通AI6应助胖头鱼采纳,获得10
17秒前
18秒前
大模型应助yyl采纳,获得10
18秒前
寒冷半雪完成签到,获得积分10
18秒前
anlikek发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
小t要读top博完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Sixth Edition 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4642822
求助须知:如何正确求助?哪些是违规求助? 4034478
关于积分的说明 12478722
捐赠科研通 3722737
什么是DOI,文献DOI怎么找? 2054750
邀请新用户注册赠送积分活动 1085746
科研通“疑难数据库(出版商)”最低求助积分说明 967629