材料科学
异质结
分解水
X射线光电子能谱
肖特基势垒
光催化
光谱学
制氢
吸收(声学)
光电子学
吸收光谱法
载流子
可再生能源
氢
纳米技术
化学工程
催化作用
化学
光学
复合材料
物理
工程类
电气工程
有机化学
二极管
量子力学
生物化学
作者
María Cabrero‐Antonino,Andrés Uscategui-Linares,Rubén Ramírez‐Grau,Pablo García-Aznar,Germán Sastre,Jianjun Zhang,Sara Goberna‐Ferrón,Josep Albero,Jiaguo Yu,Hermenegildo García,Feiyan Xu,Ana Primo
出处
期刊:Angewandte Chemie
[Wiley]
日期:2025-05-13
卷期号:64 (29): e202503860-e202503860
被引量:15
标识
DOI:10.1002/anie.202503860
摘要
Abstract Harnessing sunlight for photocatalytic overall water splitting offers a sustainable approach to renewable hydrogen (H 2 ) production, addressing global energy and environmental challenges. However, the development of efficient and durable photocatalysts remains a significant obstacle. This study introduces the design and performance of a 2D/2D Schottky heterojunction composed of Cu 2 [CuTCPP] MOF of nanometric size and exfoliated Ti 3 C 2 MXene for visible‐light‐driven overall water splitting. By leveraging the extensive interfacial contact between the two components, an interfacial electric field is generated, promoting efficient charge migration and prolonging carrier lifetimes, as confirmed through systematic density functional theory simulations, in situ irradiation X‐ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and X‐ray absorption spectroscopy. Ti 3 C 2 MXene, acting as a cocatalyst for photohole transport and accumulation, reduces oxidative degradation and slows catalyst deactivation. The synergistically enhanced light absorption properties of the Cu 2 [CuTCPP]/Ti 3 C 2 heterojunction result in an impressive H 2 evolution rate exceeding 5000 µmol g cat ⁻ 1 , underscoring its potential for next‐generation photocatalytic systems in renewable energy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI