Underwater Phaeocystis globosa monitoring based on ACE–DCP enhancement and YOLOv8 detection

水下 光学 遥感 环境科学 物理 海洋学 地质学
作者
Yanbin Tong,Wenjie Zhang,Wei‐Hong Zhang,Mingda Che,Xiaobo Li,Haofeng Hu,Jingsheng Zhai,Rongxin Su,Rongyong Zhang,Li Qi
出处
期刊:Applied Optics [The Optical Society]
卷期号:64 (9): 2287-2287
标识
DOI:10.1364/ao.549613
摘要

The occurrence of Phaeocystis globosa blooms poses a potential hazard to both human society and the ecological environment, particularly concerning the safety of cooling systems in coastal nuclear power plants. However, current ecological monitoring techniques fail to dynamically detect the densities of solitary cells of Phaeocystis globosa prior to the blooms, thus hindering timely interventions. This study proposes a framework for harmful algae monitoring by integrating underwater microscopic imaging, image processing, and object detection. Flume experiments were conducted using Phaeocystis globosa as the case study for monitoring objects. The results indicate that the proposed framework exhibits favorable performance in recognizing different types of algae, particularly in distinguishing between Phaeocystis globosa and Chlorella . Despite their similar morphology observed from the underwater imaging device under dark-field illumination, the false detection rate between Phaeocystis globosa and Chlorella approaches 0% when using the YOLOv8 object detection model. Adaptive contrast enhancement (ACE) amplifies the color discrepancies among algae and eliminates the virtual focus interference, thus improving the precision of algae classification. Subsequently, dark channel prior (DCP) reduces the noise caused by image scattering and limits the missed detection. Consequently, the precision of Phaeocystis globosa recognition using the YOLOv8 model is increased from 74% to 91%. This study presents an effective solution for in situ monitoring of specific harmful algae, which has the potential to enhance the capabilities for dynamic detection and early warning of Phaeocystis globosa blooms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风大大完成签到,获得积分10
刚刚
FashionBoy应助wucheng采纳,获得10
刚刚
调皮正豪完成签到,获得积分10
1秒前
华仔应助韭黄采纳,获得10
2秒前
龙龙ff11_完成签到,获得积分10
3秒前
aki应助风中的小鸽子采纳,获得10
6秒前
浮游应助羊羊羊采纳,获得10
9秒前
10秒前
11秒前
六个木子发布了新的文献求助10
13秒前
13秒前
impending完成签到,获得积分10
13秒前
wucheng发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
18秒前
hgf发布了新的文献求助10
19秒前
Hubert完成签到,获得积分10
19秒前
20秒前
111完成签到,获得积分10
21秒前
ss发布了新的文献求助10
21秒前
桃子e完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
25秒前
绿蚁新醅酒呀完成签到,获得积分10
28秒前
羊羊羊完成签到,获得积分20
28秒前
28秒前
29秒前
平淡的棉花糖完成签到,获得积分10
30秒前
烟花应助勤奋的沛芹采纳,获得10
31秒前
慕青应助jacq采纳,获得10
31秒前
32秒前
xumingli完成签到,获得积分10
32秒前
小二郎应助Selina采纳,获得10
33秒前
冷酷男人完成签到,获得积分10
33秒前
ddd发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460799
求助须知:如何正确求助?哪些是违规求助? 4565904
关于积分的说明 14301938
捐赠科研通 4491378
什么是DOI,文献DOI怎么找? 2460301
邀请新用户注册赠送积分活动 1449659
关于科研通互助平台的介绍 1425492