青枯菌
γ辐照
青枯病
生物
伽马射线
辐照
园艺
微生物学
病菌
物理
天体物理学
核物理学
作者
Mohammad Mahbubul Haque,Gobinda Das,Mohammad Faysal,M. A. Hossain,M. Azizul Haque,Sifat Miah,Jannatul Farthouse,M. A. Rahman,Md. Nazmul Hasan Mehedi
标识
DOI:10.1080/09553002.2025.2451630
摘要
The study focused on developing a rapid PCR-based detection method and employing gamma irradiation techniques to manage Ralstonia solanacearum, aiming to produce brown rot-free export-quality potatoes. This initiative seeks to enhance potato exports from Bangladesh. Samples of potato tubers and soil were collected from various commercially significant potato-growing areas, resulting in a total of 168 Ralstonia solanacearum isolates from potato tubers and soil across 12 regions. The detection of R. solanacearum in the enriched tuber extract and soil were conducted using the primer pairs (PS-1, PS-2) and (759, 760). For the gamma irradiation experiment, petri dishes containing R. solanacearum cultures were subjected to different doses of gamma rays at the Bangladesh Institute of Nuclear Agriculture using a 60Co source. The irradiation doses applied to the samples were 0-6.0KGy. Morphological identification based on pink/light red colonies on TTC medium was confirmed R. solanacearum in 148 isolates. PCR using species-specific primers (PS-1/PS-2) and (759, 760) verified 26 isolates (14 tubers, 12 soil), producing 553 bp and 281 bp fragments in latently infected tubers and soil samples respectively. Gamma irradiation at 2.5 kGy damaged R. solanacearum's DNA and cells, preventing brown rot, while higher doses eliminated it entirely. This offers a promising strategy to enhance safety of stored potatoes, potentially mitigating economic losses from this quarantine pathogen. The study developed a PCR detection method and gamma irradiation techniques to manage R. solanacearum, enhancing the export quality of potatoes.
科研通智能强力驱动
Strongly Powered by AbleSci AI