亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Label-Enhanced Contrastive Learning for Chinese NER

计算机科学 自然语言处理 人工智能
作者
Chengyu Wang,Shan Zhao,Tianwei Yan,Shezheng Song,Wentao Ma,Kuien Liu,Meng Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10504-10514 被引量:4
标识
DOI:10.1109/tnnls.2025.3528416
摘要

Recently, character-word lattice structures have achieved promising results for Chinese named entity recognition (NER), reducing word segmentation errors and increasing word boundary information for character sequences. However, constructing the lattice structure is complex and time-consuming, thus these lattice-based models usually suffer from low inference speed. Moreover, the quality of the lexicon affects the accuracy of the NER model. Since noise words can potentially confuse NER, limited coverage of the lexicon can cause lattice-based models to degenerate into partial character-based models. In this article, we propose a hierarchical label-enhanced contrastive learning (HLCL) method for Chinese NER. Instead of relying on the lattice structure, HLCL offers an alternative solution to robustly integrate entity boundary and type information with the help of both labels semantic and contrastive learning. HLCL is empowered by two techniques: 1) sentence-level contrastive learning (SCL) to model global mutual information between two different modalities (e.g., labels and sentences) and 2) token-level contrastive learning (TCL) to close the gap between representations of different characters (e.g., label-enhanced characters and original characters), resulting in local mutual information. With the well-designed contrastive learning scheme and the concise model during inference, HLCL can fully leverage the transferable label semantic and has a superb speed of inference. Experiments on four Chinese NER datasets show that HLCL obtains excellent efficiency as well as performance compared with existing lattice-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzgggnnnbbb发布了新的文献求助10
刚刚
7秒前
小二郎应助鸭鸭采纳,获得10
7秒前
少川完成签到 ,获得积分10
12秒前
33秒前
青柠发布了新的文献求助10
36秒前
熊奎懿发布了新的文献求助80
37秒前
赘婿应助Ancoes采纳,获得10
47秒前
科研通AI6应助180090094745采纳,获得10
48秒前
51秒前
熊奎懿发布了新的文献求助10
59秒前
1分钟前
1分钟前
青柠发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助畅小畅采纳,获得10
1分钟前
1分钟前
科研通AI2S应助Michelle采纳,获得10
1分钟前
1分钟前
王盼完成签到 ,获得积分10
1分钟前
青柠发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Ancoes完成签到,获得积分10
1分钟前
Ancoes发布了新的文献求助10
2分钟前
2分钟前
2分钟前
guigui发布了新的文献求助10
2分钟前
2分钟前
Chenyol完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
雯小瑾发布了新的文献求助10
2分钟前
2分钟前
2分钟前
liuliuliu发布了新的文献求助10
2分钟前
Zhou完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529000
求助须知:如何正确求助?哪些是违规求助? 4618288
关于积分的说明 14562360
捐赠科研通 4557224
什么是DOI,文献DOI怎么找? 2497425
邀请新用户注册赠送积分活动 1477664
关于科研通互助平台的介绍 1448975