Model updating method for offshore jacket platforms using improved DNN and OOA considering non-uniform corrosion and structural responses

有限元法 情态动词 过程(计算) 计算机科学 人工神经网络 模态分析 结构工程 工程类 算法 人工智能 化学 高分子化学 操作系统
作者
Ziguang Jia,Song Dai,Zheliang Fan,Shuai Jia,Xin Su,Song Dai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241309319
摘要

During the service life of offshore jacket platforms, the harsh marine environment leads to severe structural corrosion and damage, necessitating structural health monitoring. Ensuring the accuracy of numerical finite element models (FEM) requires critical model updating. This study introduces an improved DNN-OOA model updating method by incorporating actual structural responses into the optimization objective function and considering non-uniform corrosion of the structure. We utilized Pyansys to automatically generate large-scale datasets, simplifying the simulation process. An accurate and responsive surrogate model is generated using the improved deep neural network (DNN), and the optimal solution for the parameters to be corrected is sought through the Osprey optimization algorithm (OOA), completing the FEM updating. The main innovation of this study lies in incorporating non-uniform corrosion caused by the real marine physical environment into the model updating process. This phenomenon is employed to determine the updating range for different structural members. Furthermore, the parameters subject to updating include structural damage to the members and changes in the upper mass. Incorporating the structural response under static loading into the optimization objective function allows for a more comprehensive reflection of the structure’s dynamic and static behavior, addressing the regression confusion problem in the optimization process of purely modal frequency updating. Experimental results demonstrate that the proposed improved DNN-OOA model updating method effectively eliminates inaccuracies in simulated structural responses and mitigates the local optimum problem inherent in pure modal frequency updating. In the updated scaled jacket platform FEM, the maximum relative error of the modal frequencies is reduced to 2.624%, and the maximum error in structural response is reduced to 3.510%. This approach provides a more accurate and reliable FEM for the maintenance and safety assessment of offshore jacket platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shumin发布了新的文献求助10
1秒前
望北楼主发布了新的文献求助10
2秒前
无限的薄荷完成签到,获得积分10
2秒前
领导范儿应助YP采纳,获得10
3秒前
顾矜应助cldg采纳,获得10
4秒前
丘比特应助大马哈鱼采纳,获得10
4秒前
humble完成签到 ,获得积分10
4秒前
唐咩咩咩发布了新的文献求助10
4秒前
5秒前
挚zhi发布了新的文献求助10
5秒前
7秒前
弓长三金完成签到,获得积分10
7秒前
memo完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
南京必吃完成签到,获得积分10
11秒前
久久应助自信机器猫采纳,获得10
11秒前
Lucky完成签到,获得积分10
13秒前
欢喜海完成签到,获得积分20
15秒前
大马哈鱼发布了新的文献求助10
17秒前
omega完成签到 ,获得积分10
17秒前
三岁居居发布了新的文献求助10
18秒前
sunbigfly完成签到,获得积分10
19秒前
20秒前
21秒前
唐咩咩咩完成签到,获得积分10
23秒前
LY完成签到,获得积分20
23秒前
王三石完成签到,获得积分0
23秒前
一五完成签到,获得积分10
24秒前
科研通AI5应助小钱钱采纳,获得10
25秒前
25秒前
25秒前
失眠醉易应助三岁居居采纳,获得10
25秒前
万能图书馆应助三岁居居采纳,获得10
25秒前
优秀的石头完成签到,获得积分10
26秒前
在封我就急眼啦完成签到,获得积分10
26秒前
Lucas应助yulk采纳,获得10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789363
求助须知:如何正确求助?哪些是违规求助? 3334368
关于积分的说明 10269614
捐赠科研通 3050834
什么是DOI,文献DOI怎么找? 1674175
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693