Model updating method for offshore jacket platforms using improved DNN and OOA considering non-uniform corrosion and structural responses

有限元法 情态动词 过程(计算) 计算机科学 人工神经网络 模态分析 结构工程 工程类 算法 人工智能 操作系统 化学 高分子化学
作者
Ziguang Jia,Song Dai,Zheliang Fan,Shuai Jia,Xin Su,Song Dai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241309319
摘要

During the service life of offshore jacket platforms, the harsh marine environment leads to severe structural corrosion and damage, necessitating structural health monitoring. Ensuring the accuracy of numerical finite element models (FEM) requires critical model updating. This study introduces an improved DNN-OOA model updating method by incorporating actual structural responses into the optimization objective function and considering non-uniform corrosion of the structure. We utilized Pyansys to automatically generate large-scale datasets, simplifying the simulation process. An accurate and responsive surrogate model is generated using the improved deep neural network (DNN), and the optimal solution for the parameters to be corrected is sought through the Osprey optimization algorithm (OOA), completing the FEM updating. The main innovation of this study lies in incorporating non-uniform corrosion caused by the real marine physical environment into the model updating process. This phenomenon is employed to determine the updating range for different structural members. Furthermore, the parameters subject to updating include structural damage to the members and changes in the upper mass. Incorporating the structural response under static loading into the optimization objective function allows for a more comprehensive reflection of the structure’s dynamic and static behavior, addressing the regression confusion problem in the optimization process of purely modal frequency updating. Experimental results demonstrate that the proposed improved DNN-OOA model updating method effectively eliminates inaccuracies in simulated structural responses and mitigates the local optimum problem inherent in pure modal frequency updating. In the updated scaled jacket platform FEM, the maximum relative error of the modal frequencies is reduced to 2.624%, and the maximum error in structural response is reduced to 3.510%. This approach provides a more accurate and reliable FEM for the maintenance and safety assessment of offshore jacket platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
雨后森林完成签到,获得积分10
4秒前
wangq完成签到 ,获得积分10
5秒前
7秒前
嘻嘻完成签到,获得积分10
7秒前
爱笑的蘑菇完成签到,获得积分10
7秒前
bbible完成签到,获得积分10
8秒前
12秒前
巧克力布朗尼完成签到 ,获得积分10
12秒前
缥缈的凡梦完成签到,获得积分10
13秒前
笑一笑发布了新的文献求助10
13秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
球球了应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
zeng完成签到,获得积分10
18秒前
852应助张不大采纳,获得10
20秒前
chaochao发布了新的文献求助10
22秒前
yaoli0823发布了新的文献求助30
22秒前
无花果应助确幸采纳,获得10
24秒前
哈哈哈发布了新的文献求助10
24秒前
共享精神应助正在进行时采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403975
求助须知:如何正确求助?哪些是违规求助? 3890286
关于积分的说明 12107394
捐赠科研通 3535070
什么是DOI,文献DOI怎么找? 1939681
邀请新用户注册赠送积分活动 980593
科研通“疑难数据库(出版商)”最低求助积分说明 877350