清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Leveraging Longitudinal Patient-Reported Outcomes Trajectories to Predict Survival in Non-Small-Cell Lung Cancer

肺癌 癌症 医学 肿瘤科 人口学 计算机科学 老年学 内科学 社会学
作者
Jiawei Zhou,Benyam Muluneh,Zhaoyang Wang,H. Yao,Jim H. Hughes
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2025.01.27.25321050
摘要

Purpose: Despite their potential, patient-reported outcomes (PROs) are often underutilized in clinical decision-making, especially when improvements in PROs do not align with clinical outcomes. This misalignment may result from insufficient analytical methods that overlook the temporal dynamics and substantial variability of PROs data. To address these gaps, we developed a novel approach to investigate the prognostic value of longitudinal PRO dynamics in non-small-cell lung cancer (NSCLC) using Lung Cancer Symptom Scale (LCSS) data. Methods: Longitudinal patient-reported LCSS data from 481 NSCLC participants in the placebo arm of a Phase III trial were analyzed. A population modeling approach was applied to describe PRO progression trajectories while accounting for substantial variability in the data. Associations between PRO model parameters and survival outcomes were assessed using Cox proportional hazards models. Model-informed PRO parameters were further used to predict survival via machine learning. Results: A PRO progression model described LCSS dynamics and predicted a median time to symptom progression of 229 days (95% CI: 15-583). Faster PRO progression rates were significantly associated with poorer survival (HR 1.13, 95% CI: 1.076-1.18), while greater placebo/prior treatment effects correlated with improved survival (HR 0.93, 95% CI: 0.883-0.99). A machine learning model using PRO parameters achieved an AUC-ROC of 0.78, demonstrating their potential to predict overall survival. Conclusions: This study demonstrates that longitudinal PRO data can provide prognostic insights into survival in NSCLC. The findings support the use of PRO dynamics to improve clinical decision-making and optimize patient-centered treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
13秒前
20秒前
24秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
2分钟前
2分钟前
天玄发布了新的文献求助10
2分钟前
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
3分钟前
天玄发布了新的文献求助10
3分钟前
3分钟前
无悔完成签到 ,获得积分10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
天玄发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
wzbc完成签到,获得积分10
4分钟前
4分钟前
4分钟前
南寅完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
研友_nxw2xL完成签到,获得积分10
6分钟前
muriel完成签到,获得积分0
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624