Phase field simulation of dendrite growth in solid-state lithium batteries based on mechanical mechaincal-thermo-electrochemical coupling

材料科学 枝晶(数学) 锂(药物) 固态 电化学 联轴节(管道) 相(物质) 复合材料 工程物理 化学 电极 工程类 物理化学 数学 几何学 心理学 有机化学 精神科
作者
Hou Peng-Yang,Xie Jia-Miao,Jingyang Li,Zhang Peng,Zhaokai Li,Hao Wen-Qian,Jia Tian,Zhe Wang,Li Fu-Zheng
出处
期刊:Chinese Physics [Science Press]
卷期号:74 (7)
标识
DOI:10.7498/aps.74.20241727
摘要

Solid-state lithium batteries possess numerous advantages, including high energy density, excellent cycle stability, superior mechanical strength, non-flammability, enhanced safety, and extended service life. These characteristics make them highly suitable for applications in aerospace, new energy vehicles, and portable electronic devices. However, lithium dendrite growth at the electrode/electrolyte interface remains a critical challenge, limiting both performance and safety. The growth of lithium dendrites within the electrolyte not only reduces the battery’s Coulombic efficiency but also risks piercing the electrolyte, leading to internal short circuits between the anode and cathode. This study addresses the issue of lithium dendrite growth in solid-state lithium batteries by employing phase-field theory for numerical simulations. A phase-field model is developed, coupling the mechanical stress field, thermal field, and electrochemical field, to investigate the morphology and evolution of lithium dendrites under different ambient temperatures, external pressures, and their combined effects. The results indicate that higher temperatures and greater external pressures significantly suppress lithium dendrite growth, leading to fewer side branches, smoother surfaces, and more uniform electrochemical deposition. Increased external pressure inhibits longitudinal dendrite growth, resulting in a compressed morphology with higher specific surface area and compactness, though at the cost of increased mechanical instability. Similarly, elevated ambient temperatures enhance lithium-ion diffusion and reaction rates, which further suppress dendrite growth rates and sizes. The combined effects of temperature and pressure exhibit a pronounced inhibitory influence on dendrite growth, with stress concentrating at the dendrite roots. This stress distribution promotes lateral growth, facilitating the formation of flatter and denser lithium deposits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jimoon完成签到,获得积分10
刚刚
2秒前
c-zhang发布了新的文献求助10
3秒前
6秒前
研友_n2Q9KL发布了新的文献求助10
9秒前
子非鱼完成签到,获得积分10
9秒前
10秒前
热心香露完成签到,获得积分10
13秒前
一个舒发布了新的文献求助10
15秒前
Jasper应助echo采纳,获得10
16秒前
huff完成签到,获得积分10
18秒前
iNk发布了新的文献求助50
19秒前
20秒前
21秒前
21秒前
研友_n2Q9KL完成签到,获得积分10
22秒前
一个舒完成签到,获得积分10
23秒前
27秒前
酷炫的蓝发布了新的文献求助20
27秒前
xx发布了新的文献求助10
27秒前
小二郎应助dandiaojun采纳,获得10
30秒前
Sean完成签到,获得积分20
30秒前
31秒前
ziwei发布了新的文献求助10
31秒前
zojoy完成签到,获得积分10
31秒前
32秒前
32秒前
34秒前
Neko发布了新的文献求助30
35秒前
36秒前
37秒前
六个核桃完成签到,获得积分10
37秒前
38秒前
逗逗豆芽发布了新的文献求助10
39秒前
不是山谷发布了新的文献求助10
40秒前
zlw发布了新的文献求助10
40秒前
伊绵好完成签到,获得积分10
41秒前
ziwei完成签到,获得积分10
41秒前
42秒前
可爱的小桃完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782367
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233399
捐赠科研通 3042794
什么是DOI,文献DOI怎么找? 1670183
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758883