AI-driven identification of a novel malate structure from recycled lithium-ion batteries

锂(药物) 鉴定(生物学) 离子 材料科学 化学 生物 有机化学 生态学 内分泌学
作者
Alessandra Zanoletti,Antonella Cornelio,Elisa Galli,M. Scaglia,Alessandro Bonometti,Annalisa Zacco,Laura E. Depero,Alessandra Gianoncelli,Elza Bontempi
出处
期刊:Environmental Research [Elsevier]
卷期号:267: 120709-120709 被引量:7
标识
DOI:10.1016/j.envres.2024.120709
摘要

The integration of Artificial Intelligence (AI) into the discovery of new materials offers significant potential for advancing sustainable technologies. This paper presents a novel approach leveraging AI-driven methodologies to identify a new malate structure derived from the treatment of spent lithium-ion batteries. By analysing bibliographic data and incorporating domain-specific knowledge, AI facilitated the identification and structure refinement of a new malate complex containing different metals (Ni, Mn, Co, and Cu). The synthesized compound was investigated through chemical and physical analyses, confirming its unique structure and composition. The present work proposes a significant difference from the classical use of AI in materials science, typically rooted in data-driven approaches relying on extensive datasets. This hybrid approach, combining AI's computational power with human expertise, not only expedited the structure determination process but also ensured the reliability and accuracy of the results. Finally, AI-driven material discovery highlights that waste materials can be transformed into valuable chemical products, suggesting their possible reuse, with several expected benefits, emphasising the role of AI in fostering not only innovation but also sustainability in material science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvpl发布了新的文献求助10
2秒前
HAN完成签到,获得积分10
3秒前
Xjx6519发布了新的文献求助10
4秒前
believe发布了新的文献求助10
4秒前
水星摸鱼完成签到,获得积分10
8秒前
清脆靳发布了新的文献求助10
13秒前
星辰大海应助云水雾心采纳,获得10
14秒前
14秒前
14秒前
香蕉觅云应助李晨旭采纳,获得10
15秒前
科研通AI2S应助暖吱采纳,获得10
16秒前
思源应助77采纳,获得10
18秒前
一百度黑发布了新的文献求助10
19秒前
段醒醒发布了新的文献求助10
20秒前
bkagyin应助Jere采纳,获得20
23秒前
24秒前
一百度黑完成签到,获得积分10
28秒前
浮游应助lxl采纳,获得10
28秒前
33秒前
浮游应助科研通管家采纳,获得10
34秒前
Mic应助科研通管家采纳,获得10
34秒前
在水一方应助科研通管家采纳,获得30
34秒前
所所应助科研通管家采纳,获得10
34秒前
34秒前
Mic应助科研通管家采纳,获得10
34秒前
Zx_1993应助科研通管家采纳,获得20
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
Mic应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
Zx_1993应助科研通管家采纳,获得20
34秒前
Mic应助科研通管家采纳,获得10
34秒前
Mic应助科研通管家采纳,获得10
34秒前
BowieHuang应助科研通管家采纳,获得10
34秒前
李爱国应助科研通管家采纳,获得10
34秒前
大模型应助科研通管家采纳,获得30
34秒前
共享精神应助科研通管家采纳,获得20
34秒前
shhoing应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533