Multifunctional Thermoplastic Paper Enabled by Plant‐Cell‐Derived Additives: A Paradigm of Paper‐Based “Modern Alchemy”

作者
Xiaoyan Yu,Jie Zhou,Jianqiang Li,Hongyang Yuan,Xueren Qian,Yonghao Ni,Zhibin He,Chaoji Chen,Jing Shen
出处
期刊:Advanced Science [Wiley]
卷期号:: e06157-e06157
标识
DOI:10.1002/advs.202506157
摘要

Abstract Papermaking, an ancient yet remarkable invention, hinges on the formation of a network of plant cells. With the growing demand for bio‐derived alternatives to non‐renewable resources and difficult‐to‐degrade plastics, enhancing the functional attributes of cellulosic paper is essential to broaden its applications. Here, a facile approach is introduced to upgrade conventional cellulosic paper into an advanced thermoplastic biomaterial, endowed with ductility, wet‐strength, gas and liquid barrier functionalities, and antistatic properties. The concept is grounded in the specialized area of papermaking wet‐end chemistry and chemical additives and employs plant‐cell‐derived cellulosic additives, prepared via ring‐opening‐based heterogenous chemical engineering of paper‐grade pulp with microstructurally porous cell walls comprising fibrils, which are then formed upon dissolution in an aqueous “non‐derivatizing” solvent, for engineering the paper through a process that somehow mimics the industrial surface sizing. The utilization of additives initiates a form of paper‐based “modern alchemy”, which involves the encapsulation of fibers with ring‐opening‐engineered cellulosic structures, solvent‐induced fiber annealing, bridging of interfiber gaps, film‐forming, porosity reduction, structural densification, enhanced internal bonding, paper surface smoothening, etc. The engineered paper can be facilely reshaped through hot‐pressing for 3D forming and recyclable applications. Additionally, their dissolution in a cellulosic solution yields functional additives for diverse applications, offering another avenue for recycling. This work offers insights into designing paper‐based thermoplastic materials using sustainable additives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助泠漓采纳,获得10
刚刚
1秒前
直白完成签到 ,获得积分10
1秒前
fengfeng发布了新的文献求助10
1秒前
墨凡完成签到,获得积分10
1秒前
1秒前
able发布了新的文献求助10
1秒前
2秒前
一碗晚月发布了新的文献求助10
2秒前
3秒前
3秒前
penglinhua完成签到,获得积分10
4秒前
luoluo发布了新的文献求助10
5秒前
6秒前
初九月完成签到,获得积分10
6秒前
1111111111111111完成签到,获得积分10
6秒前
6秒前
something发布了新的文献求助10
8秒前
8秒前
喜欢玩王者荣耀完成签到 ,获得积分10
8秒前
Alan完成签到 ,获得积分10
8秒前
nono完成签到,获得积分10
8秒前
9秒前
10秒前
一碗晚月完成签到,获得积分10
10秒前
朝阳区李知恩应助蝎y采纳,获得30
10秒前
11秒前
11秒前
ding应助玩命的鹏笑采纳,获得10
11秒前
to高坚果完成签到,获得积分10
12秒前
JIN发布了新的文献求助10
12秒前
朴素万恶发布了新的文献求助30
12秒前
小铃铛发布了新的文献求助10
12秒前
初九月发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
热情饼干发布了新的文献求助10
15秒前
15秒前
桐桐应助Clarity采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676