Ultra-short-term prediction of regional photovoltaic power based on dynamic graph convolutional neural network

光伏系统 计算机科学 卷积神经网络 图形 网格 实时计算 人工智能 数学 工程类 几何学 理论计算机科学 电气工程
作者
Xuemin Zhang,Rui Gao,Cunhao Zhu,Chenyu Liu,Shengwei Mei
出处
期刊:Electric Power Systems Research [Elsevier BV]
卷期号:226: 109965-109965 被引量:1
标识
DOI:10.1016/j.epsr.2023.109965
摘要

With the increasing scale of grid-connected photovoltaic (PV) power generation, the accurate prediction of regional PV power is of great significance for the safe and stable operation of power systems. However, the temporal spatial correlation of different PV stations is changing with the movement of clouds. This paper proposes a dynamic spatial temporal graph convolutional neural network (DSTGCN) to model the time-varying correlation for improving the accuracy of power prediction. Firstly, according to the spatial distribution of clouds and the location of PV stations, a graph structure considering the weather type of each PV station is constructed. Then, the dynamic graph structure of the PV stations in the region is predicted based on cloud displacement calculation and trajectory prediction. Finally, a regional PV power prediction model is proposed based on the dynamic graph convolutional layer and bidirectional long short-term memory (LSTM) module. By adaptively integrating the information from satellite cloud images, numerical weather prediction (NWP), and historical power, the proposed model achieves higher and more stable prediction accuracy. Case from a real-world large PV region shows that the proposed method can improve the accuracy of 1.5–4 h ahead prediction by 1–3 percent, and the standard deviation of prediction error is smaller, which verifies the superior and stable performance of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗黑同学完成签到,获得积分10
刚刚
刚刚
学术渣渣发布了新的文献求助10
2秒前
2秒前
dadayou完成签到,获得积分10
2秒前
orixero应助安详的映寒采纳,获得10
3秒前
3秒前
大卫戴完成签到 ,获得积分10
3秒前
整齐的萝完成签到,获得积分20
5秒前
zhao完成签到 ,获得积分10
6秒前
NeXt_best发布了新的文献求助10
7秒前
Luna完成签到 ,获得积分10
7秒前
8秒前
水平做发布了新的文献求助10
8秒前
zafan发布了新的文献求助10
8秒前
infinite完成签到,获得积分10
8秒前
疯了发布了新的文献求助10
9秒前
Akim应助舒适的藏花采纳,获得10
10秒前
陈强完成签到,获得积分10
10秒前
英俊的铭应助甜甜的雨灵采纳,获得10
11秒前
vvvvvv应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得10
11秒前
hjyylab应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得30
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得30
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845729
求助须知:如何正确求助?哪些是违规求助? 3388049
关于积分的说明 10551625
捐赠科研通 3108709
什么是DOI,文献DOI怎么找? 1713014
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774891