Classification of Rosa roxburghii Tratt from different geographical origins using non-targeted HPLC-UV-FLD fingerprints and chemometrics

线性判别分析 化学计量学 高效液相色谱法 偏最小二乘回归 主成分分析 色谱法 模式识别(心理学) 人工智能 指纹(计算) 化学 数学 计算机科学 统计
作者
Xiao‐Dong Sun,Min Zhang,Shuo Zhang,Yixuan Chen,Junhua Chen,Pengjiao Wang,Xiu-Li Gao
出处
期刊:Food Control [Elsevier BV]
卷期号:155: 110087-110087 被引量:8
标识
DOI:10.1016/j.foodcont.2023.110087
摘要

In this study, a novel non-targeted strategy based on high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and fluorescence detection (HPLC-FLD) was first proposed for the classification of Rosa roxburghii Tratt (RRT) from eight geographical origins in Guizhou, China. HPLC-UV and HPLC-FLD fingerprints were simultaneously recorded by an HPLC-UV-FLD instrument. Then, fingerprint data were processed with low-level data fusion and variable reduction strategies before chemometric analysis. Based on different signal types and data orders of the resulting fingerprints, four strategies for RRT classification were proposed and compared. In the first three strategies, three supervised classification methods including partial least squares-discriminant analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF) were used to build discriminant models, using different kinds of first-order fingerprints (HPLC-UV, HPLC-FLD and HPLC-UV-FLD), respectively. Moreover, N-way partial least squares-discriminant analysis (NPLS-DA) discriminant model was established based on the second-order fingerprints acquired by HPLC-FLD. By comparison, the best result was obtained by PLS-DA based on first-order HPLC-UV-FLD fused fingerprints, the correct classification rates (CCRs) of cross-validation, training set and test set were 98.8%, 100% and 96.9%, respectively. Non-targeted chromatographic fingerprints were used to solve the problem of RRT classification for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨纯完成签到 ,获得积分10
1秒前
deletelzr发布了新的文献求助10
1秒前
2秒前
王缪芸发布了新的文献求助10
3秒前
李琦发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
深情安青应助FSAFSAFAS采纳,获得10
8秒前
21发布了新的文献求助10
10秒前
犹豫鹤完成签到,获得积分10
13秒前
Naive完成签到,获得积分10
14秒前
momo发布了新的文献求助10
16秒前
丘比特应助淡淡菊花香采纳,获得10
16秒前
充电宝应助Wu采纳,获得10
19秒前
星辰大海应助UD采纳,获得10
19秒前
Estrella应助久久采纳,获得10
20秒前
华子的五A替身完成签到,获得积分10
23秒前
23秒前
123完成签到,获得积分10
28秒前
carnationli发布了新的文献求助10
28秒前
29秒前
32秒前
胡图图完成签到 ,获得积分10
33秒前
UD发布了新的文献求助10
34秒前
lyt发布了新的文献求助10
35秒前
科研通AI6应助张金漫采纳,获得10
36秒前
37秒前
aaa完成签到,获得积分10
37秒前
大力洙完成签到,获得积分10
38秒前
田様应助饱满的亦旋采纳,获得30
41秒前
41秒前
41秒前
42秒前
小二郎应助八篇文章采纳,获得10
42秒前
稀罕你完成签到,获得积分10
42秒前
洪茜茜发布了新的文献求助10
43秒前
共享精神应助发发采纳,获得10
43秒前
诸松完成签到,获得积分10
44秒前
世间安得双全法完成签到,获得积分0
46秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955