Classification of Rosa roxburghii Tratt from different geographical origins using non-targeted HPLC-UV-FLD fingerprints and chemometrics

线性判别分析 化学计量学 高效液相色谱法 偏最小二乘回归 主成分分析 色谱法 模式识别(心理学) 人工智能 指纹(计算) 化学 数学 计算机科学 统计
作者
Xiao‐Dong Sun,Min Zhang,Shuo Zhang,Yixuan Chen,Junhua Chen,Pengjiao Wang,Xiu-Li Gao
出处
期刊:Food Control [Elsevier BV]
卷期号:155: 110087-110087 被引量:8
标识
DOI:10.1016/j.foodcont.2023.110087
摘要

In this study, a novel non-targeted strategy based on high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and fluorescence detection (HPLC-FLD) was first proposed for the classification of Rosa roxburghii Tratt (RRT) from eight geographical origins in Guizhou, China. HPLC-UV and HPLC-FLD fingerprints were simultaneously recorded by an HPLC-UV-FLD instrument. Then, fingerprint data were processed with low-level data fusion and variable reduction strategies before chemometric analysis. Based on different signal types and data orders of the resulting fingerprints, four strategies for RRT classification were proposed and compared. In the first three strategies, three supervised classification methods including partial least squares-discriminant analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF) were used to build discriminant models, using different kinds of first-order fingerprints (HPLC-UV, HPLC-FLD and HPLC-UV-FLD), respectively. Moreover, N-way partial least squares-discriminant analysis (NPLS-DA) discriminant model was established based on the second-order fingerprints acquired by HPLC-FLD. By comparison, the best result was obtained by PLS-DA based on first-order HPLC-UV-FLD fused fingerprints, the correct classification rates (CCRs) of cross-validation, training set and test set were 98.8%, 100% and 96.9%, respectively. Non-targeted chromatographic fingerprints were used to solve the problem of RRT classification for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好好完成签到 ,获得积分10
1秒前
刘茂帅完成签到,获得积分10
1秒前
拾光小铺发布了新的文献求助20
3秒前
李健的小迷弟应助hyx采纳,获得10
4秒前
4秒前
seven完成签到 ,获得积分10
4秒前
七慕凉应助树大根深采纳,获得10
5秒前
dongdoctor发布了新的文献求助10
5秒前
彬不语发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
未雨绸缪发布了新的文献求助10
9秒前
9秒前
9秒前
wangayting发布了新的文献求助10
10秒前
Dicy发布了新的文献求助10
11秒前
12秒前
12秒前
婳嬨发布了新的文献求助10
13秒前
14秒前
14秒前
beisuwind完成签到,获得积分10
14秒前
hyx完成签到,获得积分10
16秒前
16秒前
NMZN发布了新的文献求助10
16秒前
17秒前
17秒前
beisuwind发布了新的文献求助10
20秒前
11完成签到,获得积分10
21秒前
wendy发布了新的文献求助10
22秒前
氯丙嗪完成签到 ,获得积分10
22秒前
home完成签到,获得积分10
25秒前
yanananan应助飘逸楷瑞采纳,获得10
26秒前
armpit完成签到,获得积分10
26秒前
30秒前
舒适行天完成签到,获得积分10
32秒前
hu发布了新的文献求助10
33秒前
luk完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10280990
捐赠科研通 3053122
什么是DOI,文献DOI怎么找? 1675474
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761414