Infield corn kernel detection using image processing, machine learning, and deep learning methodologies under natural lighting

人工智能 计算机科学 机器学习 目标检测 RGB颜色模型 深度学习 核(代数) 图像处理 支持向量机 机器视觉 阈值 模式识别(心理学) 计算机视觉 图像(数学) 数学 组合数学
作者
Xiaohang Liu,Zhao Zhang,C. Igathinathane,Paulo Flores,Man Zhang,H. Li,Xiongzhe Han,Tuan M. Ha,Yiannis Ampatzidis,Hak-Jin Kim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122278-122278 被引量:9
标识
DOI:10.1016/j.eswa.2023.122278
摘要

Machine vision has been increasingly used to address agricultural issues. One such case is corn field harvest losses and image-based object detection approaches, namely image processing, machine learning, and deep learning were investigated to detect and count infield corn kernels, immediately after harvest for combine harvester performance evaluation. A hand-held low-cost RGB camera was used to collect images with kernels of different backgrounds, based on which a 420 images dataset (200, 40, and 180 for training, validation, and testing, respectively) was generated. Three different models for kernel detection were constructed based on image processing, machine learning, and deep learning. For the imaging processing method, the images were preprocessed (color thresholding, graying, and erosion), followed by Hough circle detection to identify kernels. For the machine learning (cascade detector) and deep learning (Mask R-CNN, EfficientDet, YOLOv5, and YOLOX), models were trained, validated, and tested. Experimental results showed the overall performance of the deep learning network YOLOv5 was superior to the other approaches, with a small model size (89.3MB) and a high model average precision (78.3%) for object detection. The detection accuracy, undetection rate and F1 value were 90.7%, 9.3%, and 91.1%, respectively, and the average detection rate was 55 fps. This study demonstrates that the YOLOv5 model has the potential to be used as a real-time, reliable, and robust method for infield corn kernel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干净的烧鹅完成签到,获得积分10
2秒前
林攸之完成签到,获得积分10
2秒前
英俊的铭应助焰火青年采纳,获得30
11秒前
back you up应助小天采纳,获得150
11秒前
专注的胡萝卜完成签到 ,获得积分10
17秒前
大猪完成签到 ,获得积分10
21秒前
LLH完成签到,获得积分10
23秒前
祺王862完成签到,获得积分10
24秒前
24秒前
joleisalau发布了新的文献求助10
28秒前
冷傲老九完成签到,获得积分10
29秒前
小康找文献完成签到 ,获得积分10
32秒前
33秒前
阿童木完成签到,获得积分10
38秒前
小蘑菇应助Rafayel采纳,获得10
41秒前
hanchangcun完成签到,获得积分10
44秒前
44秒前
科研通AI5应助懦弱的难敌采纳,获得10
45秒前
MoodMeed完成签到 ,获得积分10
46秒前
sgt发布了新的文献求助10
47秒前
冷傲老九发布了新的文献求助10
49秒前
科研通AI5应助小天采纳,获得10
50秒前
59秒前
大个应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
果果完成签到,获得积分10
1分钟前
PangSir完成签到,获得积分10
1分钟前
1分钟前
焰火青年发布了新的文献求助30
1分钟前
拉布拉多多不多完成签到,获得积分10
1分钟前
asplD完成签到,获得积分10
1分钟前
xiaoxiao完成签到 ,获得积分10
1分钟前
星辰大海应助老秦采纳,获得10
1分钟前
yuan发布了新的文献求助10
1分钟前
Orange应助hunajx采纳,获得10
1分钟前
研友_RLNzvL发布了新的文献求助30
1分钟前
123.完成签到 ,获得积分10
1分钟前
我见青山完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315