Infield corn kernel detection using image processing, machine learning, and deep learning methodologies under natural lighting

人工智能 计算机科学 机器学习 目标检测 RGB颜色模型 深度学习 核(代数) 图像处理 支持向量机 机器视觉 阈值 模式识别(心理学) 计算机视觉 图像(数学) 数学 组合数学
作者
Xiaohang Liu,Zhao Zhang,C. Igathinathane,Paulo Flores,Man Zhang,H. Li,Xiongzhe Han,Tuan M. Ha,Yiannis Ampatzidis,Hak-Jin Kim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122278-122278 被引量:9
标识
DOI:10.1016/j.eswa.2023.122278
摘要

Machine vision has been increasingly used to address agricultural issues. One such case is corn field harvest losses and image-based object detection approaches, namely image processing, machine learning, and deep learning were investigated to detect and count infield corn kernels, immediately after harvest for combine harvester performance evaluation. A hand-held low-cost RGB camera was used to collect images with kernels of different backgrounds, based on which a 420 images dataset (200, 40, and 180 for training, validation, and testing, respectively) was generated. Three different models for kernel detection were constructed based on image processing, machine learning, and deep learning. For the imaging processing method, the images were preprocessed (color thresholding, graying, and erosion), followed by Hough circle detection to identify kernels. For the machine learning (cascade detector) and deep learning (Mask R-CNN, EfficientDet, YOLOv5, and YOLOX), models were trained, validated, and tested. Experimental results showed the overall performance of the deep learning network YOLOv5 was superior to the other approaches, with a small model size (89.3MB) and a high model average precision (78.3%) for object detection. The detection accuracy, undetection rate and F1 value were 90.7%, 9.3%, and 91.1%, respectively, and the average detection rate was 55 fps. This study demonstrates that the YOLOv5 model has the potential to be used as a real-time, reliable, and robust method for infield corn kernel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘇q完成签到 ,获得积分10
1秒前
1秒前
cheeseqianfu发布了新的文献求助10
2秒前
鞭霆驳回了乐乐应助
2秒前
3秒前
3秒前
SciGPT应助科研通管家采纳,获得30
4秒前
大狒狒完成签到,获得积分10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助小枣采纳,获得10
6秒前
6秒前
dou发布了新的文献求助200
7秒前
8秒前
JJ完成签到,获得积分10
8秒前
莫听南发布了新的文献求助10
8秒前
mmmmly_1完成签到 ,获得积分10
8秒前
Stella完成签到 ,获得积分20
9秒前
无花果应助端庄断秋采纳,获得10
9秒前
陈瑞滢完成签到,获得积分10
10秒前
嗯嗯嗯完成签到,获得积分10
10秒前
10秒前
入眸应助缥缈的铅笔采纳,获得10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914477
求助须知:如何正确求助?哪些是违规求助? 3459955
关于积分的说明 10908582
捐赠科研通 3186519
什么是DOI,文献DOI怎么找? 1761478
邀请新用户注册赠送积分活动 852077
科研通“疑难数据库(出版商)”最低求助积分说明 793151