SwiftR: Cross-platform ransomware fingerprinting using hierarchical neural networks on hybrid features

勒索软件 计算机科学 静态分析 人工神经网络 人工智能 编码(集合论) 机器学习 词(群论) 数据挖掘 理论计算机科学 集合(抽象数据类型) 恶意软件 计算机安全 程序设计语言 语言学 哲学
作者
ElMouatez Billah Karbab,Mourad Debbabi,Abdelouahid Derhab
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120017-120017 被引量:8
标识
DOI:10.1016/j.eswa.2023.120017
摘要

Ransomware has been largely exploited by cybercriminals to target individuals and organizations. In response to the increasing number and magnitude of ransomware attacks, it is important to consider the following problems when designing a ransomware fingerprinting solution: (i) how to make the solution portable to different hardware platforms and different dynamic analysis reports, (ii) how to design a solution that considers real-world use-cases, and (iii) how to evaluate the solution under realistic and challenging evaluation scenarios. To deal with these problems, we propose SwiftR, a novel portable framework for cross-platform ransomware detection and fingerprinting. SwiftR provides an accurate ransomware detection capability that relies on raw hybrid features along with advanced deep learning techniques. SwiftR is cross-platform as it is agnostic to architectures and operating systems by leveraging two novel types of features: (1) the assembly code Intermediate Representation (IR) features that are derived from static analysis, and (2) word-based features that are derived from the behavioral analysis reports, which are produced during dynamic analysis. SwiftR is supervised, and consists of two novel components: (a) Static SwiftR that proposes a novel architecture, called Hierarchical Neural Network (HNN), and (b) Dynamic SwiftR that applies LSTM on word embedding sequences when the Static SwiftR provides a low probability confidence. SwiftR aims to address the limitations of previous works by considering real-world use cases and challenging evaluation scenarios, i.e., time-resiliency, unknown family resiliency, and production evaluation scenarios. In addition, we extensively evaluate SwiftR on a dataset of 40.3K samples, which is the largest one compared to previous works. An F1-score of 98%, 96%, and 94% is achieved for ransomware detection, segregation between ransomware and other malware, and ransomware family attribution respectively. Furthermore, SwiftR maintains its high performance when deployed in a production environment where it processes 183K samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伍寒烟发布了新的文献求助10
2秒前
3秒前
t通应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
5秒前
7秒前
叫我益达完成签到,获得积分10
7秒前
hyl发布了新的文献求助10
8秒前
小二郎应助amonke007采纳,获得10
9秒前
在水一方应助激情的一斩采纳,获得10
10秒前
杨冰发布了新的文献求助10
12秒前
有风的地方完成签到 ,获得积分10
12秒前
Jin完成签到,获得积分10
14秒前
77完成签到,获得积分10
14秒前
神勇的人雄完成签到,获得积分10
16秒前
21秒前
啦啦啦发布了新的文献求助10
22秒前
yang发布了新的文献求助10
25秒前
baby完成签到,获得积分10
26秒前
28秒前
咔咔完成签到,获得积分10
29秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098