SwiftR: Cross-platform ransomware fingerprinting using hierarchical neural networks on hybrid features

勒索软件 计算机科学 静态分析 人工神经网络 人工智能 编码(集合论) 机器学习 词(群论) 数据挖掘 理论计算机科学 集合(抽象数据类型) 恶意软件 计算机安全 程序设计语言 语言学 哲学
作者
ElMouatez Billah Karbab,Mourad Debbabi,Abdelouahid Derhab
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120017-120017 被引量:16
标识
DOI:10.1016/j.eswa.2023.120017
摘要

Ransomware has been largely exploited by cybercriminals to target individuals and organizations. In response to the increasing number and magnitude of ransomware attacks, it is important to consider the following problems when designing a ransomware fingerprinting solution: (i) how to make the solution portable to different hardware platforms and different dynamic analysis reports, (ii) how to design a solution that considers real-world use-cases, and (iii) how to evaluate the solution under realistic and challenging evaluation scenarios. To deal with these problems, we propose SwiftR, a novel portable framework for cross-platform ransomware detection and fingerprinting. SwiftR provides an accurate ransomware detection capability that relies on raw hybrid features along with advanced deep learning techniques. SwiftR is cross-platform as it is agnostic to architectures and operating systems by leveraging two novel types of features: (1) the assembly code Intermediate Representation (IR) features that are derived from static analysis, and (2) word-based features that are derived from the behavioral analysis reports, which are produced during dynamic analysis. SwiftR is supervised, and consists of two novel components: (a) Static SwiftR that proposes a novel architecture, called Hierarchical Neural Network (HNN), and (b) Dynamic SwiftR that applies LSTM on word embedding sequences when the Static SwiftR provides a low probability confidence. SwiftR aims to address the limitations of previous works by considering real-world use cases and challenging evaluation scenarios, i.e., time-resiliency, unknown family resiliency, and production evaluation scenarios. In addition, we extensively evaluate SwiftR on a dataset of 40.3K samples, which is the largest one compared to previous works. An F1-score of 98%, 96%, and 94% is achieved for ransomware detection, segregation between ransomware and other malware, and ransomware family attribution respectively. Furthermore, SwiftR maintains its high performance when deployed in a production environment where it processes 183K samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔同学发布了新的文献求助10
2秒前
百浪多息发布了新的文献求助10
4秒前
4秒前
韦见风发布了新的文献求助10
10秒前
12秒前
Jun完成签到 ,获得积分10
12秒前
16秒前
粥粥完成签到 ,获得积分10
17秒前
clinched发布了新的文献求助10
18秒前
领导范儿应助韦见风采纳,获得10
22秒前
CYM发布了新的文献求助10
22秒前
22秒前
Merciful完成签到 ,获得积分10
24秒前
LL完成签到 ,获得积分10
27秒前
28秒前
28秒前
30秒前
Snow完成签到,获得积分10
32秒前
孤独夜安完成签到,获得积分10
33秒前
小鱼完成签到,获得积分10
33秒前
自然的霸发布了新的文献求助10
34秒前
36秒前
胡末末发布了新的文献求助10
36秒前
娇娇大王完成签到,获得积分10
40秒前
搜集达人应助狂奔弟弟采纳,获得10
42秒前
clinched完成签到,获得积分10
44秒前
45秒前
狂奔弟弟2完成签到 ,获得积分10
48秒前
mxq发布了新的文献求助20
49秒前
49秒前
狂奔弟弟完成签到 ,获得积分10
53秒前
53秒前
ZWQ完成签到,获得积分10
53秒前
狂奔弟弟发布了新的文献求助10
55秒前
57秒前
小蘑菇应助李李李采纳,获得100
58秒前
louiselin发布了新的文献求助10
59秒前
粘豆包发布了新的文献求助10
1分钟前
1分钟前
小杨完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777681
求助须知:如何正确求助?哪些是违规求助? 4108948
关于积分的说明 12710584
捐赠科研通 3830704
什么是DOI,文献DOI怎么找? 2113052
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020693