Attention-Like Multimodality Fusion With Data Augmentation for Diagnosis of Mental Disorders Using MRI

多模态 计算机科学 医学 万维网
作者
Rui Liu,Zhi-An Huang,Yao Hu,Zexuan Zhu,Ka‐Chun Wong,Kay Chen Tan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7627-7641 被引量:17
标识
DOI:10.1109/tnnls.2022.3219551
摘要

The globally rising prevalence of mental disorders leads to shortfalls in timely diagnosis and therapy to reduce patients' suffering. Facing such an urgent public health problem, professional efforts based on symptom criteria are seriously overstretched. Recently, the successful applications of computer-aided diagnosis approaches have provided timely opportunities to relieve the tension in healthcare services. Particularly, multimodal representation learning gains increasing attention thanks to the high temporal and spatial resolution information extracted from neuroimaging fusion. In this work, we propose an efficient multimodality fusion framework to identify multiple mental disorders based on the combination of functional and structural magnetic resonance imaging. A multioutput conditional generative adversarial network (GAN) is developed to address the scarcity of multimodal data for augmentation. Based on the augmented training data, the multiheaded gating fusion model is proposed for classification by extracting the complementary features across different modalities. The experiments demonstrate that the proposed model can achieve robust accuracies of 75.1 $\pm$ 1.5%, 72.9 $\pm$ 1.1%, and 87.2 $\pm$ 1.5% for autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and schizophrenia, respectively. In addition, the interpretability of our model is expected to enable the identification of remarkable neuropathology diagnostic biomarkers, leading to well-informed therapeutic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
文献看不懂应助Violet采纳,获得10
3秒前
小二郎应助三木采纳,获得10
3秒前
4秒前
研友_Zb1rln发布了新的文献求助30
4秒前
Atlantis发布了新的文献求助10
6秒前
单于安发布了新的文献求助10
8秒前
9秒前
9秒前
悦耳的怀绿完成签到,获得积分10
11秒前
12秒前
wzhang完成签到,获得积分10
13秒前
皮皮蛙完成签到,获得积分10
13秒前
赘婿应助NEO采纳,获得30
14秒前
14秒前
三木发布了新的文献求助10
16秒前
落后醉易发布了新的文献求助10
16秒前
ldh032应助奥斯卡采纳,获得10
20秒前
小太阳完成签到,获得积分10
21秒前
1874发布了新的文献求助30
21秒前
jenningseastera应助草木采纳,获得10
24秒前
CodeCraft应助猪猪hero采纳,获得10
26秒前
27秒前
归尘应助高兴荔枝采纳,获得10
29秒前
赘婿应助高兴荔枝采纳,获得10
29秒前
科研通AI5应助谢佳冀采纳,获得10
29秒前
29秒前
where发布了新的文献求助10
32秒前
小邹完成签到,获得积分10
32秒前
陆晓亦完成签到,获得积分10
33秒前
34秒前
NEO发布了新的文献求助30
34秒前
菜籽发布了新的文献求助10
35秒前
Alexbirchurros完成签到 ,获得积分10
37秒前
1900191497完成签到,获得积分10
37秒前
默默的天德完成签到,获得积分10
39秒前
小医神僧发布了新的文献求助10
41秒前
科研小狗完成签到 ,获得积分10
41秒前
科研通AI5应助where采纳,获得10
43秒前
虹归于叶完成签到 ,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339