因科镍合金625
因科镍合金
弧(几何)
冶金
制造工程
材料科学
机械工程
工程类
合金
作者
J. Iain Sword,Alexander Galloway,Athanasios Toumpis
出处
期刊:Sustainability
[MDPI AG]
日期:2024-05-16
卷期号:16 (10): 4178-4178
被引量:5
摘要
Inconel 625 is a nickel-based superalloy widely used in industries such as energy, space, and defence, due to its strength and corrosion resistance. It is traditionally time- and resource-intensive to machine, leading to increased environmental impact and material waste. Using additive manufacturing (AM) technology enables a reduction in resource consumption during the manufacture of high value components, as material is only deposited where it is required. This study compares the environmental impact of manufacturing an Inconel 625 impeller through machining and wire arc additive manufacturing (WAAM) by employing established life cycle assessment methods. WAAM shows significant advantages, cutting energy consumption threefold and reducing material waste from 85% to 35%. The current work also evaluates the mechanical properties of WAAM-produced components through tensile and axial fatigue testing, in addition to the use of optical and electron microscopy for metallurgical analysis and fractography. This demonstrates yield and ultimate tensile strengths exceeding industrial standards, with comparable or superior fatigue life to other AM methods. The improved fatigue performance extends the service life of components, bolstering sustainability by reducing the need for frequent replacements, thereby lessening associated environmental impacts. These findings underscore the promise of WAAM in enhancing both environmental sustainability and mechanical performance in manufacturing Inconel 625 components.
科研通智能强力驱动
Strongly Powered by AbleSci AI