Multi-factor normalisation of viral counts from wastewater improves the detection accuracy of viral disease in the community

诺如病毒 废水 人口 病毒载量 传输(电信) 环境科学 生物 病毒学 病毒 医学 环境工程 计算机科学 环境卫生 电信
作者
Cameron Pellett,Kata Farkas,Rachel C. Williams,Matthew J. Wade,Andrew J. Weightman,Eleanor Jameson,Gareth Cross,Davey L. Jones
出处
期刊:Environmental Technology and Innovation [Elsevier]
卷期号:36: 103720-103720
标识
DOI:10.1016/j.eti.2024.103720
摘要

The detection of viruses (e.g. SARS-CoV-2, norovirus) in wastewater represents an effective way to monitor the prevalence of these pathogens circulating within the community. However, accurate quantification of viral concentrations in wastewater, proportional to human input, is constrained by a range of uncertainties, including (i) dilution within the sewer network, (ii) degradation of viral RNA during wastewater transit, (iii) catchment population and facility use, (iv) efficiency of viral concentration and extraction from wastewater, and (v) inhibition of amplification during the RT-qPCR step. Here, we address these uncertainties by investigating several potential normalisation factors including the concentration of ammonium and orthophosphate. A faecal indicator virus (crAssphage), and the recovery of the process-control viruses (murine norovirus and bacteriophage Phi6), used for quality control during the RT-qPCR step, were also considered. We found that multi-factor normalisation of SARS-CoV-2 RT-qPCR data was optimal using a combination of crAssphage, process-control virus recovery, and concentration efficiency to improve prediction accuracy relative to clinical test data. Using multi-normalised SARS-CoV-2 RT-qPCR data, we found a lasso regression model with random forest modelled residuals lowers the prediction error of positives by 46 %, compared to a single linear regression using raw data. This multi-normalised approach enables more accurate wastewater-based predictions of clinical cases up to five days in advance of clinical data, identifying trends in disease prevalence before clinical testing, and demonstrates the potential to improve viral pathogen detection for a range of currently monitored and emerging diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
健忘的溪灵完成签到 ,获得积分10
1秒前
1秒前
愉快柠檬完成签到 ,获得积分20
1秒前
水果发布了新的文献求助10
1秒前
欢乐谷完成签到,获得积分10
1秒前
共享精神应助苒苒采纳,获得20
1秒前
Delight完成签到 ,获得积分0
2秒前
chen完成签到,获得积分10
3秒前
leowu发布了新的文献求助200
3秒前
无极微光应助lhk采纳,获得20
3秒前
英姑应助盐焗小崔采纳,获得10
3秒前
深情安青应助GLv采纳,获得10
4秒前
4秒前
后陡门的夏天完成签到 ,获得积分10
4秒前
4秒前
zhangguo发布了新的文献求助10
5秒前
长风完成签到,获得积分10
5秒前
aodilee完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
zhang发布了新的文献求助10
7秒前
7秒前
9秒前
chenqiumu应助wxyinhefeng采纳,获得30
9秒前
九三发布了新的文献求助10
9秒前
领导范儿应助rnanoda采纳,获得10
9秒前
霜降完成签到,获得积分10
10秒前
小笼包发布了新的文献求助10
10秒前
WB87发布了新的文献求助10
10秒前
搜集达人应助zhangguo采纳,获得10
11秒前
11秒前
野乔完成签到,获得积分10
12秒前
领导范儿应助shr采纳,获得10
12秒前
liujie666发布了新的文献求助10
12秒前
鎏祈发布了新的文献求助10
12秒前
名丿完成签到,获得积分10
12秒前
WeiCY9886完成签到,获得积分20
13秒前
小马甲应助逝月采纳,获得10
13秒前
su完成签到,获得积分20
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499823
求助须知:如何正确求助?哪些是违规求助? 4596445
关于积分的说明 14454913
捐赠科研通 4529733
什么是DOI,文献DOI怎么找? 2482170
邀请新用户注册赠送积分活动 1466094
关于科研通互助平台的介绍 1438920