Prompts, Pearls, Imperfections: Comparing ChatGPT and a Human Researcher in Qualitative Data Analysis

定性研究 语篇分析 心理学 面子(社会学概念) 认识论 社会学 计算机科学 语言学 社会科学 哲学
作者
Jonas Wachinger,Kate Bärnighausen,Louis N. Schäfer,Kerry Scott,Shannon A. McMahon
出处
期刊:Qualitative Health Research [SAGE Publishing]
被引量:20
标识
DOI:10.1177/10497323241244669
摘要

The impact of ChatGPT and other large language model–based applications on scientific work is being debated across contexts and disciplines. However, despite ChatGPT’s inherent focus on language generation and processing, insights regarding its potential for supporting qualitative research and analysis remain limited. In this article, we advocate for an open discourse on chances and pitfalls of AI-supported qualitative analysis by exploring ChatGPT’s performance when analyzing an interview transcript based on various prompts and comparing results to those derived by an experienced human researcher. Themes identified by the human researcher and ChatGPT across analytic prompts overlapped to a considerable degree, with ChatGPT leaning toward descriptive themes but also identifying more nuanced dynamics (e.g., ‘trust and responsibility’ and ‘acceptance and resistance’). ChatGPT was able to propose a codebook and key quotes from the transcript which had considerable face validity but would require careful review. When prompted to embed findings into broader theoretical discourses, ChatGPT could convincingly argue how identified themes linked to the provided theories, even in cases of (seemingly) unfitting models. In general, despite challenges, ChatGPT performed better than we had expected, especially on identifying themes which generally overlapped with those of an experienced researcher, and when embedding these themes into specific theoretical debates. Based on our results, we discuss several ideas on how ChatGPT could contribute to but also challenge established best-practice approaches for rigorous and nuanced qualitative research and teaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13完成签到,获得积分10
1秒前
yanruiting发布了新的文献求助10
1秒前
2秒前
2秒前
春韭秋菘完成签到,获得积分10
3秒前
jay2000完成签到,获得积分10
3秒前
5秒前
Bertha完成签到,获得积分10
6秒前
英勇冰蓝完成签到 ,获得积分10
6秒前
xxx发布了新的文献求助10
6秒前
7秒前
刻苦寄松发布了新的文献求助10
7秒前
上上谦完成签到,获得积分10
7秒前
choumaoo发布了新的文献求助10
7秒前
8秒前
HCCha完成签到,获得积分10
8秒前
香蕉觅云应助hjs888采纳,获得10
8秒前
满意哈密瓜,数据线完成签到 ,获得积分10
8秒前
9秒前
9秒前
美好晓亦完成签到,获得积分10
10秒前
NexusExplorer应助redamancy采纳,获得10
10秒前
Akim应助qwerty123456采纳,获得10
11秒前
杨芷艳发布了新的文献求助10
11秒前
XXX完成签到 ,获得积分10
11秒前
12秒前
12秒前
xxx完成签到,获得积分20
13秒前
14秒前
14秒前
两句话完成签到 ,获得积分10
14秒前
15秒前
yufanhui应助宋灵竹采纳,获得10
15秒前
15秒前
打打应助tao采纳,获得10
16秒前
喜悦代荷应助zhou采纳,获得10
16秒前
17秒前
17秒前
asuit完成签到,获得积分10
18秒前
范星月应助杆杆采纳,获得10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164860
求助须知:如何正确求助?哪些是违规求助? 3700245
关于积分的说明 11682917
捐赠科研通 3389501
什么是DOI,文献DOI怎么找? 1858894
邀请新用户注册赠送积分活动 919295
科研通“疑难数据库(出版商)”最低求助积分说明 831988