氧气
电解质
X射线光电子能谱
拉曼光谱
热传导
离子
氧化物
密度泛函理论
离子键合
材料科学
兴奋剂
化学物理
离子电导率
分析化学(期刊)
化学
物理化学
计算化学
电极
光电子学
核磁共振
物理
复合材料
光学
有机化学
冶金
色谱法
作者
Hongdong Cai,Xia Chen,Xunying Wang,Wenjing Dong,Haibo Xiao,Dan Zheng,Hao Wang,Baoyuan Wang
标识
DOI:10.1021/acsaem.2c01718
摘要
To elucidate the ion conduction mechanism, the pure oxide structure Sn1–xCexO2−δ (x = 0.05, 0.025) is obtained by doping Ce into SnO2 and combined with Sm0.2Ce0.8O3−δ to form an Sn1–xCexO2−δ–SDC semiconductor-ionic material (SIM), which is evaluated as the electrolyte membrane to assemble fuel cells. Raman measurements revealed that two types of oxygen vacancies, the Frenkel oxygen vacancy (F-OV) and the intrinsic oxygen vacancy (I-OV), simultaneously existed in the Sn1–xCexO2−δ–SDC SIM. Through X-ray photoelectron spectroscopy (XPS) characterization and density functional theory (DFT) calculation, it can be found that I-OVs provide a transport pathway for oxygen ions. In contrast, F-OVs function against the oxygen ion conduction due to the Coulomb repulsion of interstitial oxygen toward oxygen ions. The influence of the Ce doping in SnO2 lies on restraining the production of F-OVs to benefit the oxygen ion conduction and finally improve the electrochemical performance of the assembled fuel cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI