Uncertainty Analysis and Sensitivity Estimation on an Artillery External Ballistic System

炮兵部队 灵敏度(控制系统) 射弹 蒙特卡罗方法 弹道学 内弹道 色散(光学) 计算机科学 模拟 数学 应用数学 控制理论(社会学) 工程类 物理 统计 人工智能 光学 控制(管理) 量子力学 电子工程
作者
Nichen Tong,Qiming Liu,Xu Han,Xingfu Wu,Zheyi Zhang
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:144 (10) 被引量:1
标识
DOI:10.1115/1.4054641
摘要

Abstract In the design of artillery external ballistics, sensitivity analysis can effectively quantify the influence of multi-source uncertain parameters on the dispersion of projectile landing points to improve the precise attack ability of artillery. However, for a complicated artillery external ballistic system containing multiple inputs and outputs, its mapping relationships are not definite under uncertainty and it is difficult to estimate a comprehensive sensitivity index due to involving the calculation of high dimensional integral. Therefore, a sensitivity analysis method based on the combination of variance and covariance decomposition with the approximate high dimensional model representation (AHDMR) is proposed to measure the influence of muzzle state parameters, projectile characteristic parameters, etc. on projectile landing points under uncertainty in this paper. First, we establish the numerical simulation model of artillery external ballistics by combing the external ballistic theory and Runge–Kutta algorithm to acquire the mapping relationships between the uncertain input parameters and the dispersion of projectile landing points and implement uncertainty analysis under different uncertainty levels (UL) and distributions. Then, with the use of a set of orthogonal polynomials for uniform and Gaussian distribution, respectively, the high dimensional model representation of the mapping relationship is approximately expressed and the compressive sensitivity indices can be effectively estimated based on the Monte Carlo simulation. Moreover, the comparison results of two numerical examples indicate the proposed sensitivity analysis method is accurate and practical. Finally, through the method, the importance rankings of multi-uncertain parameters on projectile landing points for two distributions are effectively quantified under the UL = [0.01, 0.02, 0.03, 0.04, 0.05].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助琪琪子采纳,获得10
刚刚
nanda完成签到,获得积分0
刚刚
欢喜可愁给欢喜可愁的求助进行了留言
1秒前
2秒前
张张爱科研完成签到,获得积分10
2秒前
情怀应助MOMO采纳,获得10
2秒前
2秒前
2秒前
今后应助鳗鱼绿蝶采纳,获得10
2秒前
青檀完成签到,获得积分10
3秒前
无花果应助Yana1311采纳,获得10
3秒前
3秒前
4秒前
传奇3应助xxxxx采纳,获得10
4秒前
4秒前
我是老大应助furina采纳,获得10
4秒前
4秒前
5秒前
顺利的白昼完成签到,获得积分20
5秒前
saily完成签到,获得积分10
5秒前
6秒前
BINGBING发布了新的文献求助10
6秒前
7秒前
逍遥发布了新的文献求助10
7秒前
桓某人发布了新的文献求助10
7秒前
咕咕唧唧完成签到,获得积分10
7秒前
FashionBoy应助李伟采纳,获得10
8秒前
9秒前
着急的小猫咪完成签到 ,获得积分10
9秒前
科研通AI5应助王安卉采纳,获得20
11秒前
11秒前
科研通AI5应助福桃采纳,获得10
11秒前
小井盖完成签到 ,获得积分10
12秒前
12秒前
困敦发布了新的文献求助10
12秒前
14秒前
咕咕唧唧发布了新的文献求助10
14秒前
鳗鱼绿蝶发布了新的文献求助10
14秒前
后知后觉完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031