作者
Yangyue Xiang,Lei Wang,B.C. Si,Yongxian Zhu,Jiayi Yu,Zhejun Pan
摘要
Summary Water injection huff-n-puff (WHnP) is currently an important technology to improve the recovery of tight reservoirs. On the one hand, this technology can replenish the formation energy, and on the other hand, it can effectively replace the oil in a tight reservoir. In this paper, the effect of WHnP on cumulative oil production and oil increase rate is simulated and analyzed by comparing depleted development and WHnP scenarios, using numerical simulation methods. A field-scale numerical simulation was modeled based on typical fluid, reservoir, and fracture characteristics of Mazhong tight oil, coupled with geomechanical effects, stress sensitivity, and embedded discrete fractures. The result of different WHnP cycles is studied, and the limiting WHnP cycle is determined to be four cycles. The WHnP efficiency is compared for different permeability scales from 0.005 to 1 md, and it is determined that WHnP at a permeability of 0.01 md resulted in the largest production enhancement. Subsequently, sensitivity studies are conducted using an orthogonal experimental design for six uncertain parameters, including the WHnP cycle, production pressure difference, permeability, natural fracture density, hydraulic fracture half-length, and conductivity. The results show that throughput period and permeability are important parameters affecting cumulative oil production, and permeability and natural fracture density are important parameters affecting oil increase rate. In addition, contour plots of permeability and WHnP cycle, hydraulic fracture half-length, and conductivity are generated. Based on these plots, the optimal conditions with better enhanced recovery results in different WHnP scenarios can be easily determined. This study can better solve the problems encountered in WHnP of tight reservoirs and provide a theoretical basis for stable and efficient development.