亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable machine learning approach for predicting 30-day readmission after stroke

医学 冲程(发动机) 可解释性 接收机工作特性 队列 机器学习 内科学 急诊医学 计算机科学 机械工程 工程类
作者
Ji Lv,Mengmeng Zhang,Yujie Fu,Mengshuang Chen,Binjie Chen,Zhiyuan Xu,Xianliang Yan,Shuqun Hu,Ningjun Zhao
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:174: 105050-105050 被引量:13
标识
DOI:10.1016/j.ijmedinf.2023.105050
摘要

Stroke is the second leading cause of death worldwide and has a significantly high recurrence rate. We aimed to identify risk factors for stroke recurrence and develop an interpretable machine learning model to predict 30-day readmissions after stroke.Stroke patients deposited in electronic health records (EHRs) in Xuzhou Medical University Hospital between February 1, 2021, and November 30, 2021, were included in the study, and deceased patients were excluded. We extracted 74 features from EHRs, and the top 20 features (chi-2 value) were used to build machine learning models. 80% of the patients were used for pre-training. Subsequently, a 20% holdout dataset was used for verification. The Shapley Additive exPlanations (SHAP) method was used to explore the interpretability of the model.The cohort included 6,558 patients, of whom the mean (SD) age was 65 (11) years, 3,926 were males (59.86 %), and 132 (2.01 %) were readmitted within 30 days. The area under the receiver operating characteristic curve (AUROC) for the optimized model was 0.80 (95 % CI 0.68-0.80). We used the SHAP method to identify the top 10 risk factors (i.e., severe carotid artery stenosis, weak, homocysteine, glycosylated hemoglobin, sex, lymphocyte percentage, neutrophilic granulocyte percentage, urine glucose, fresh cerebral infarction, and red blood cell count). The AUROC of a model with the 10 features was 0.80 (95 % CI 0.69-0.80) and was not significantly different from that of the model with 20 risk factors.Our methods not only showed good performance in predicting 30-day readmissions after stroke but also revealed risk factors that provided valuable insights for treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助大胆绮采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
herococa完成签到,获得积分10
46秒前
1分钟前
2分钟前
大胆绮发布了新的文献求助10
2分钟前
糖伯虎完成签到 ,获得积分10
2分钟前
小刘哥加油完成签到 ,获得积分10
2分钟前
缓慢的语琴完成签到 ,获得积分10
3分钟前
田様应助大力采纳,获得30
3分钟前
3分钟前
wjywjy发布了新的文献求助10
3分钟前
打打应助呵呵心情采纳,获得10
3分钟前
4分钟前
呵呵心情发布了新的文献求助10
4分钟前
呵呵心情完成签到,获得积分20
4分钟前
Dannnn发布了新的文献求助10
4分钟前
倾听昆语完成签到 ,获得积分10
4分钟前
Kkk完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大胆绮完成签到,获得积分10
4分钟前
神外王001完成签到 ,获得积分10
4分钟前
LRxxx完成签到 ,获得积分10
5分钟前
风趣的靖雁完成签到 ,获得积分10
5分钟前
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
科研通AI5应助lll采纳,获得10
6分钟前
7分钟前
7分钟前
budingman发布了新的文献求助10
7分钟前
budingman发布了新的文献求助10
7分钟前
9分钟前
budingman发布了新的文献求助10
9分钟前
DDL发布了新的文献求助10
9分钟前
科研通AI5应助budingman采纳,获得10
9分钟前
9分钟前
budingman发布了新的文献求助10
9分钟前
9分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212793
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667304
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229