Enhanced Electrical Conductivity and Tensile Strength of Cu/Single-Layer Graphene/Cu Nanomaterials

石墨烯 材料科学 电阻率和电导率 复合材料 化学气相沉积 极限抗拉强度 氧化石墨烯纸 溅射沉积 溅射 冶金 纳米技术 薄膜 电气工程 工程类
作者
Xinyue Liu,Yaling Huang,Lu Wu,Rui Liu,Yuyao Li,Quanfang Chen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (4): 2697-2707 被引量:10
标识
DOI:10.1021/acsanm.2c05065
摘要

Copper (Cu) is widely used for electrical conduction but the inherent resistive heating not only wastes significant amounts of energy but also creates severe reliability issues; therefore, how to increase copper's electrical conductivity has been a goal with a long history. Although nanometer-thin graphene has been regarded with great potential to increase copper's conductive performance, published results are far from expectations and the quest remains about the actual enhancement efficiency of graphene. Here, we demonstrated that single-layer graphene in a Cu-sandwiched Cu/graphene/Cu composite structure fabricated by combining chemical vapor deposition (CVD) of graphene with magnetron sputtering deposition of copper can significantly increase annealed Cu's electrical conductivity and strength at the same time. With a graphene content of less than 0.0008 vol % (a single-layer graphene sandwiched by 260 nm sputtering copper and 45 μm copper foil), the resultant electrical conductivity is about 110% of the annealed copper foil. In addition, the tensile strength is about 187% of the annealed copper. The converted enhancement efficiency per unit volume fraction of graphene is about a factor of 125 for the electrical conductivity and about a factor of 1096 for the tensile strength, respectively. The increased electrical conductivity and strength of Cu/graphene/Cu-sandwiched composite is attributed to the soundness of single-layer graphene obtained from the CVD growth, the graphene quality retention through the sputtering deposition process, and the good interfacial bonding formed between graphene and copper nanofilms that materializes band gap tuning by doping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷酷傲易发布了新的文献求助10
1秒前
317完成签到,获得积分10
2秒前
2秒前
冷昆柏完成签到 ,获得积分10
7秒前
Lucas应助Liang采纳,获得10
8秒前
Akim应助冷酷傲易采纳,获得10
15秒前
情怀应助GarethY采纳,获得10
16秒前
Pepsi发布了新的文献求助10
19秒前
25秒前
林思琦发布了新的文献求助20
28秒前
wwx发布了新的文献求助30
30秒前
31秒前
小翼完成签到,获得积分10
32秒前
moriaty应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
moriaty应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
35秒前
Rita应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
yuze发布了新的文献求助10
35秒前
健壮的弼完成签到,获得积分10
35秒前
三点半完成签到,获得积分10
37秒前
阿森发布了新的文献求助30
37秒前
44秒前
可靠之玉应助lsl采纳,获得10
45秒前
Pepsi完成签到,获得积分10
48秒前
49秒前
nazure发布了新的文献求助30
50秒前
研友_8KX15L完成签到,获得积分10
50秒前
我是老大应助抬头可见月采纳,获得10
51秒前
冷酷傲易发布了新的文献求助10
54秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784361
求助须知:如何正确求助?哪些是违规求助? 4111730
关于积分的说明 12720498
捐赠科研通 3836336
什么是DOI,文献DOI怎么找? 2115326
邀请新用户注册赠送积分活动 1138343
关于科研通互助平台的介绍 1024263