DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition

计算机科学 变压器 人工智能 冗余(工程) 利用 理论计算机科学 模式识别(心理学) 计算机视觉 计算机安全 量子力学 操作系统 物理 电压
作者
Jiayu Jiao,Yu-Ming Tang,Kun-Yu Lin,Yipeng Gao,J. Andy,Yaowei Wang,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8906-8919 被引量:254
标识
DOI:10.1109/tmm.2023.3243616
摘要

As a de facto solution, the vanilla Vision Transformers (ViTs) are encouraged to model long-range dependencies between arbitrary image patches while the global attended receptive field leads to quadratic computational cost. Another branch of Vision Transformers exploits local attention inspired by CNNs, which only models the interactions between patches in small neighborhoods. Although such a solution reduces the computational cost, it naturally suffers from small attended receptive fields, which may limit the performance. In this work, we explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field. By analyzing the patch interaction of global attention in ViTs, we observe two key properties in the shallow layers, namely locality and sparsity, indicating the redundancy of global dependency modeling in shallow layers of ViTs. Accordingly, we propose Multi-Scale Dilated Attention (MSDA) to model local and sparse patch interaction within the sliding window. With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages. Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks. On ImageNet-1 K classification task, DilateFormer achieves comparable performance with 70% fewer FLOPs compared with existing state-of-the-art models. Our DilateFormer-Base achieves 85.6% top-1 accuracy on ImageNet-1 K classification task, 53.5% box mAP/46.1% mask mAP on COCO object detection/instance segmentation task and 51.1% MS mIoU on ADE20 K semantic segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qianyun完成签到,获得积分10
刚刚
e麓绝尘完成签到 ,获得积分10
1秒前
bigpluto发布了新的文献求助10
1秒前
ok完成签到,获得积分10
2秒前
吴军霄完成签到,获得积分10
2秒前
dddyrrrrr完成签到 ,获得积分10
3秒前
AN关闭了AN文献求助
3秒前
4秒前
4秒前
852应助孔孔采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
田様应助Yummy采纳,获得10
10秒前
不安的凡桃完成签到,获得积分10
10秒前
11秒前
共享精神应助李燊采纳,获得10
12秒前
12秒前
xu发布了新的文献求助30
12秒前
13秒前
满意的蜗牛完成签到 ,获得积分10
13秒前
13秒前
古德完成签到,获得积分10
14秒前
lisa0612完成签到,获得积分10
14秒前
15秒前
15秒前
团子发布了新的文献求助10
16秒前
薯仔发布了新的文献求助10
16秒前
pluto_完成签到,获得积分20
16秒前
16秒前
17秒前
17秒前
17秒前
AN关闭了AN文献求助
17秒前
小b亮完成签到,获得积分10
18秒前
小巧酸奶发布了新的文献求助10
18秒前
19秒前
pluto_发布了新的文献求助10
20秒前
袁浩宇发布了新的文献求助10
20秒前
21秒前
稻子发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365