DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition

计算机科学 变压器 人工智能 冗余(工程) 利用 理论计算机科学 模式识别(心理学) 计算机视觉 计算机安全 量子力学 操作系统 物理 电压
作者
Jiayu Jiao,Yu-Ming Tang,Kun-Yu Lin,Yipeng Gao,J. Andy,Yaowei Wang,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8906-8919 被引量:115
标识
DOI:10.1109/tmm.2023.3243616
摘要

As a de facto solution, the vanilla Vision Transformers (ViTs) are encouraged to model long-range dependencies between arbitrary image patches while the global attended receptive field leads to quadratic computational cost. Another branch of Vision Transformers exploits local attention inspired by CNNs, which only models the interactions between patches in small neighborhoods. Although such a solution reduces the computational cost, it naturally suffers from small attended receptive fields, which may limit the performance. In this work, we explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field. By analyzing the patch interaction of global attention in ViTs, we observe two key properties in the shallow layers, namely locality and sparsity, indicating the redundancy of global dependency modeling in shallow layers of ViTs. Accordingly, we propose Multi-Scale Dilated Attention (MSDA) to model local and sparse patch interaction within the sliding window. With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages. Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks. On ImageNet-1 K classification task, DilateFormer achieves comparable performance with 70% fewer FLOPs compared with existing state-of-the-art models. Our DilateFormer-Base achieves 85.6% top-1 accuracy on ImageNet-1 K classification task, 53.5% box mAP/46.1% mask mAP on COCO object detection/instance segmentation task and 51.1% MS mIoU on ADE20 K semantic segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小蘑菇应助深爱不疑采纳,获得100
3秒前
3秒前
elegant122完成签到,获得积分20
4秒前
雪白凡双完成签到,获得积分20
4秒前
ma发布了新的文献求助10
7秒前
nna_sama发布了新的文献求助10
8秒前
10秒前
12秒前
无谓发布了新的文献求助10
12秒前
半霜完成签到 ,获得积分10
13秒前
快乐肥宅水完成签到,获得积分20
14秒前
16秒前
nna_sama完成签到,获得积分10
17秒前
粉色完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
顾矜应助内向雪碧采纳,获得10
18秒前
19秒前
wanci应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
kylin完成签到,获得积分10
22秒前
keyanxiaobai发布了新的文献求助10
23秒前
kelekenan发布了新的文献求助10
24秒前
爱学习的小花生完成签到,获得积分10
24秒前
郭振鹏发布了新的文献求助20
25秒前
秋夜白发布了新的文献求助10
25秒前
传奇3应助yolanda采纳,获得30
27秒前
chengqin完成签到 ,获得积分10
30秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322741
关于积分的说明 10211312
捐赠科研通 3038069
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098