Emotion recognition of EEG signals based on contrastive learning graph convolutional model

计算机科学 脑电图 人工智能 图形 机器学习 语音识别 模式识别(心理学) 心理学 理论计算机科学 精神科
作者
Yiling Zhang,Yuan Liao,Wei Chen,Xiruo Zhang,Liya Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046060-046060 被引量:1
标识
DOI:10.1088/1741-2552/ad7060
摘要

Abstract Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects’ EEG data. Approach. We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals’ emotional states. Specifically, CLGCN merges the dual benefits of CL’s synchronous multisubject data learning and the GCN’s proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset’s learning process. Main results. Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model’s efficacy. Significance. This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
fffff完成签到,获得积分10
3秒前
孤独的寻双完成签到,获得积分10
4秒前
Zzz_Carlos完成签到 ,获得积分10
5秒前
舒服的山槐完成签到 ,获得积分10
5秒前
6秒前
害羞的冷雪完成签到,获得积分10
6秒前
guan发布了新的文献求助10
6秒前
最牛的kangkang完成签到 ,获得积分10
8秒前
爸气侧漏发布了新的文献求助10
9秒前
lxx完成签到 ,获得积分10
9秒前
10秒前
11秒前
月半完成签到,获得积分10
12秒前
17秒前
赘婿应助123采纳,获得10
19秒前
21秒前
25秒前
YCD应助科研通管家采纳,获得20
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
26秒前
科目三应助科研通管家采纳,获得10
26秒前
飞快的怀寒完成签到,获得积分10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
27秒前
叶子发布了新的文献求助20
29秒前
30秒前
小鑫发布了新的文献求助30
31秒前
32秒前
chen完成签到,获得积分10
32秒前
莫氓完成签到 ,获得积分10
33秒前
俭朴夜雪完成签到,获得积分10
34秒前
李健应助renpp822采纳,获得30
34秒前
35秒前
123发布了新的文献求助10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327032
关于积分的说明 10229289
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669728
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757