亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FIT-RAG: Black-Box RAG with Factual Information and Token Reduction

安全性令牌 还原(数学) 黑匣子 计算机科学 数学 计算机安全 人工智能 几何学
作者
Yuren Mao,Xuemei Dong,Wenyi Xu,Yunjun Gao,Bin Wei,Ying Zhang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:5
标识
DOI:10.1145/3676957
摘要

Due to the extraordinarily large number of parameters, fine-tuning Large Language Models (LLMs) to update long-tail or out-of-date knowledge is impractical in lots of applications. To avoid fine-tuning, we can alternatively treat a LLM as a black-box (i.e., freeze the parameters of the LLM) and augment it with a Retrieval-Augmented Generation (RAG) system, namely black-box RAG. Recently, black-box RAG has achieved success in knowledge-intensive tasks and has gained much attention. Existing black-box RAG methods typically fine-tune the retriever to cater to LLMs’ preferences and concatenate all the retrieved documents as the input, which suffers from two issues: (1) Ignorance of Factual Information. The LLM preferred documents may not contain the factual information for the given question, which can mislead the retriever and hurt the effectiveness of black-box RAG; (2) Waste of Tokens. Simply concatenating all the retrieved documents brings large amounts of unnecessary tokens for LLMs, which degenerates the efficiency of black-box RAG. To address these issues, this paper proposes a novel black-box RAG framework which utilizes the factual information in the retrieval and reduces the number of tokens for augmentation, dubbed FIT-RAG. FIT-RAG utilizes the factual information by constructing a bi-label document scorer which takes the factual information and LLMs’ preferences as labels respectively. Besides, it reduces the tokens by introducing a self-knowledge recognizer and a sub-document-level token reducer, which enables FIT-RAG to avoid unnecessary augmentation and reduce augmentation tokens as much as possible. FIT-RAG achieves both superior effectiveness and efficiency, which is validated by extensive experiments across three open-domain question-answering datasets: TriviaQA, NQ and PopQA. FIT-RAG can improve the answering accuracy of Llama2-13B-Chat by 14.3% on TriviaQA, 19.9% on NQ and 27.5% on PopQA, respectively. Furthermore, it can save approximately half of the tokens on average across the three datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
5秒前
在水一方应助Kevin采纳,获得10
33秒前
caca完成签到,获得积分0
44秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
慕青应助ST采纳,获得10
2分钟前
2分钟前
ST完成签到,获得积分10
2分钟前
归尘发布了新的文献求助10
2分钟前
ST发布了新的文献求助10
2分钟前
和谐续完成签到 ,获得积分10
2分钟前
xiawanren00完成签到,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
Mss关闭了Mss文献求助
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
3分钟前
画晴发布了新的文献求助10
3分钟前
内向士萧发布了新的文献求助10
3分钟前
愉快的钢铁侠完成签到,获得积分10
3分钟前
3分钟前
内向士萧完成签到,获得积分10
3分钟前
3分钟前
Hermionezj发布了新的文献求助30
3分钟前
秋风今是完成签到 ,获得积分10
4分钟前
Mss发布了新的文献求助10
4分钟前
xi12345应助科研通管家采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
李爱国应助Mss采纳,获得10
4分钟前
haoliu发布了新的文献求助30
4分钟前
4分钟前
Kevin发布了新的文献求助10
4分钟前
Mss完成签到,获得积分20
4分钟前
haoliu完成签到,获得积分10
5分钟前
5分钟前
谷子完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972774
求助须知:如何正确求助?哪些是违规求助? 3517093
关于积分的说明 11186153
捐赠科研通 3252538
什么是DOI,文献DOI怎么找? 1796527
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805664