Optimal Molecular Design: Generative Active Learning Combining REINVENT with Precise Binding Free Energy Ranking Simulations

排名(信息检索) 计算机科学 生成语法 生成模型 能量(信号处理) 分子结合 机器学习 人机交互 人工智能 化学 物理 分子 量子力学 有机化学
作者
Hannes H. Loeffler,Shunzhou Wan,Marco Klähn,Agastya P. Bhati,Peter V. Coveney
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c00576
摘要

Active learning (AL) is a specific instance of sequential experimental design and uses machine learning to intelligently choose the next data point or batch of molecular structures to be evaluated. In this sense, it closely mimics the iterative design-make-test-analysis cycle of laboratory experiments to find optimized compounds for a given design task. Here, we describe an AL protocol which combines generative molecular AI, using REINVENT, and physics-based absolute binding free energy molecular dynamics simulation, using ESMACS, to discover new ligands for two different target proteins, 3CLpro and TNKS2. We have deployed our generative active learning (GAL) protocol on Frontier, the world's only exa-scale machine. We show that the protocol can find higher-scoring molecules compared to the baseline, a surrogate ML docking model for 3CLpro and compounds with experimentally determined binding affinities for TNKS2. The ligands found are also chemically diverse and occupy a different chemical space than the baseline. We vary the batch sizes that are put forward for free energy assessment in each GAL cycle to assess the impact on their efficiency on the GAL protocol and recommend their optimal values in different scenarios. Overall, we demonstrate a powerful capability of the combination of physics-based and AI methods which yields effective chemical space sampling at an unprecedented scale and is of immediate and direct relevance to modern, data-driven drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助胖虎采纳,获得10
1秒前
光亮的太阳完成签到,获得积分10
2秒前
4秒前
遗迹小白完成签到,获得积分10
4秒前
5秒前
6秒前
文静三颜完成签到,获得积分10
7秒前
kyt发布了新的文献求助10
9秒前
852应助迅速的八宝粥采纳,获得10
10秒前
wanci应助Helium采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
残幻应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
15秒前
wanci应助科研通管家采纳,获得10
15秒前
嘿嘿哈嘿88完成签到,获得积分10
17秒前
18秒前
18秒前
CipherSage应助陈可欣采纳,获得10
19秒前
22秒前
莱贝特发布了新的文献求助10
22秒前
22秒前
打打应助CHB只争朝夕采纳,获得10
24秒前
cryjslong完成签到,获得积分10
24秒前
24秒前
赘婿应助留胡子的之云采纳,获得10
24秒前
堂风发布了新的文献求助30
24秒前
王子完成签到,获得积分10
28秒前
kyt完成签到,获得积分10
29秒前
exosome发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
31秒前
陈鹿华完成签到 ,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669