Learning to Allocate Time-Bound and Dynamic Tasks to Multiple Robots Using Covariant Attention Neural Networks

机器人 协变变换 人工神经网络 计算机科学 人工智能 控制工程 工程类 数学 几何学
作者
Steve Paul,Souma Chowdhury
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:24 (9)
标识
DOI:10.1115/1.4065883
摘要

Abstract In various applications of multi-robotics in disaster response, warehouse management, and manufacturing, tasks that are known a priori and tasks added during run time need to be assigned efficiently and without conflicts to robots in the team. This multi-robot task allocation (MRTA) process presents itself as a combinatorial optimization (CO) problem that is usually challenging to be solved in meaningful timescales using typical (mixed)integer (non)linear programming tools. Building on a growing body of work in using graph reinforcement learning to learn search heuristics for such complex CO problems, this paper presents a new graph neural network architecture called the covariant attention mechanism (CAM). CAM can not only generalize but also scale to larger problems than that encountered in training, and handle dynamic tasks. This architecture combines the concept of covariant compositional networks used here to embed the local structures in task graphs, with a context module that encodes the robots’ states. The encoded information is passed onto a decoder designed using multi-head attention mechanism. When applied to a class of MRTA problems with time deadlines, robot ferry range constraints, and multi-trip settings, CAM surpasses a state-of-the-art graph learning approach based on the attention mechanism, as well as a feasible random-walk baseline across various generalizability and scalability tests. Performance of CAM is also found to be at par with a high-performing non-learning baseline called BiG-MRTA, while noting up to a 70-fold improvement in decision-making efficiency over this baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小玉米完成签到 ,获得积分10
1秒前
1秒前
充电宝应助Xiaolu采纳,获得10
2秒前
浩二发布了新的文献求助30
2秒前
英勇幻姬完成签到,获得积分10
4秒前
4秒前
Henry发布了新的文献求助20
4秒前
faith发布了新的文献求助20
4秒前
le完成签到 ,获得积分20
4秒前
Hunter完成签到,获得积分20
5秒前
gy完成签到,获得积分20
5秒前
6秒前
6秒前
杨枝修喵完成签到,获得积分10
8秒前
9秒前
英姑应助stay采纳,获得10
10秒前
wl完成签到,获得积分10
10秒前
11秒前
gy发布了新的文献求助10
11秒前
狂炫AD钙奶完成签到,获得积分10
12秒前
13秒前
海荣完成签到,获得积分10
13秒前
翊嘉完成签到 ,获得积分10
14秒前
田様应助清晨的小鹿采纳,获得10
14秒前
lbw发布了新的文献求助10
14秒前
缥缈的魔镜完成签到 ,获得积分10
15秒前
16秒前
Seng发布了新的文献求助10
17秒前
CodeCraft应助LIANG采纳,获得20
17秒前
英姑应助dicpaccn采纳,获得10
17秒前
随意了么完成签到,获得积分10
18秒前
欢呼的未来完成签到 ,获得积分10
18秒前
luan完成签到,获得积分10
18秒前
19秒前
19秒前
bierbia发布了新的文献求助30
21秒前
Orange应助lbw采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Absent Here 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
Die neue Frauenbewegung in Deutschland. Abschied vom kleinen Unterschied. Eine Quellensammlung 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4347751
求助须知:如何正确求助?哪些是违规求助? 3853822
关于积分的说明 12028741
捐赠科研通 3495576
什么是DOI,文献DOI怎么找? 1917953
邀请新用户注册赠送积分活动 960764
科研通“疑难数据库(出版商)”最低求助积分说明 860524