离群值
卡尔曼滤波器
协方差
扩展卡尔曼滤波器
计算机科学
异常检测
算法
噪音(视频)
协方差矩阵
非线性系统
迭代法
稳健性(进化)
人工智能
模式识别(心理学)
数学
统计
图像(数学)
基因
物理
量子力学
生物化学
化学
作者
Yangtianze Tao,Stephen S.‐T. Yau
标识
DOI:10.1109/lsp.2023.3285118
摘要
In this paper, we develop OR-IEKF which is a novel outlier-robust iterative extended Kalman filtering (IEKF) framework based on nonlinear regression formulation of update step. A new Kalman-type update step with reweighted prediction covariance and reweighted observation noise covariance are produced under the OR-IEKF framework, which could cut off the large outliers in observations causing by unknown outlier noises. By using various robust cost functions to solve such special nonlinear regression problems, we derive three algorithms. The performances of these new filters are evaluated in a nonlinear system simulation study.
科研通智能强力驱动
Strongly Powered by AbleSci AI