Efficient Algorithms for Stochastic Ride-Pooling Assignment with Mixed Fleets

联营 计算机科学 供应链 利润(经济学) 算法 运筹学 工程类 经济 人工智能 政治学 法学 微观经济学
作者
Qi Luo,Viswanath Nagarajan,Alexander Sundt,Yafeng Yin,John Vincent,Mehrdad Shahabi
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 908-936 被引量:6
标识
DOI:10.1287/trsc.2021.0349
摘要

Ride-pooling, which accommodates multiple passenger requests in a single trip, has the potential to substantially enhance the throughput of mobility-on-demand (MoD) systems. This paper investigates MoD systems that operate mixed fleets composed of “basic supply” and “augmented supply” vehicles. When the basic supply is insufficient to satisfy demand, augmented supply vehicles can be repositioned to serve rides at a higher operational cost. We formulate the joint vehicle repositioning and ride-pooling assignment problem as a two-stage stochastic integer program, where repositioning augmented supply vehicles precedes the realization of ride requests. Sequential ride-pooling assignments aim to maximize total utility or profit on a shareability graph: a hypergraph representing the matching compatibility between available vehicles and pending requests. Two approximation algorithms for midcapacity and high-capacity vehicles are proposed in this paper; the respective approximation ratios are [Formula: see text] and [Formula: see text], where p is the maximum vehicle capacity plus one. Our study evaluates the performance of these approximation algorithms using an MoD simulator, demonstrating that these algorithms can parallelize computations and achieve solutions with small optimality gaps (typically within 1%). These efficient algorithms pave the way for various multimodal and multiclass MoD applications. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the National Science Foundation [Grants CCF-2006778 and FW-HTF-P 2222806], the Ford Motor Company, and the Division of Civil, Mechanical, and Manufacturing Innovation [Grants CMMI-1854684, CMMI-1904575, and CMMI-1940766]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0349 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助端庄的碧萱采纳,获得10
1秒前
张zz发布了新的文献求助30
1秒前
厄页石页完成签到,获得积分10
2秒前
科研通AI5应助白开水采纳,获得10
5秒前
6秒前
9秒前
10秒前
11秒前
小蘑菇应助kevinchan2009采纳,获得10
13秒前
18秒前
52pry发布了新的文献求助10
24秒前
爱听歌的大地完成签到 ,获得积分10
24秒前
星河长明完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
kingcoming发布了新的文献求助10
28秒前
kevinchan2009发布了新的文献求助10
33秒前
inging发布了新的文献求助10
34秒前
酷波er应助欢呼流沙采纳,获得10
38秒前
41秒前
inging完成签到,获得积分10
42秒前
TongKY完成签到 ,获得积分10
43秒前
43秒前
100完成签到,获得积分10
45秒前
清爽源智发布了新的文献求助10
47秒前
科研通AI5应助Hermit采纳,获得10
47秒前
kevinchan2009完成签到,获得积分10
47秒前
电气工人完成签到,获得积分10
47秒前
Wizard发布了新的文献求助10
47秒前
pky完成签到,获得积分20
48秒前
51秒前
落寞奎发布了新的文献求助30
52秒前
彭于晏应助sdafcaewsf采纳,获得10
52秒前
思源应助YXX采纳,获得10
56秒前
星辰大海应助猕猴桃采纳,获得10
56秒前
科研通AI5应助清爽源智采纳,获得10
57秒前
魯蛋完成签到,获得积分10
58秒前
花痴的谷雪完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780525
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225002
捐赠科研通 3041057
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667