Single Remote Sensing Image Super-Resolution via a Generative Adversarial Network With Stratified Dense Sampling and Chain Training

计算机科学 人工智能 采样(信号处理) 图像分辨率 图像(数学) 鉴别器 比例(比率) 像素 符号 特征(语言学) 残余物 模式识别(心理学) 数学 计算机视觉 算法 地图学 算术 探测器 电信 滤波器(信号处理) 哲学 语言学 地理
作者
Fanen Meng,Sensen Wu,Yadong Li,Zhe Zhang,Tian Feng,Renyi Liu,Zhenhong Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-22 被引量:7
标识
DOI:10.1109/tgrs.2023.3344112
摘要

Super-resolution (SR) methods have significantly contributed to the improvement of the spatial resolution of remote sensing (RS) images. The development of deep learning empowers novel methods to learn informative feature representation from massive low-resolution (LR) and high-resolution (HR) image pairs. Conventional RS image SR methods, however, may fail in large-scale ( $\times 8$ and $\times 9$ ) SR tasks. Specifically, a larger scale factor corresponds to less information in LR images, which is a considerable challenge to SR. To address the issue, we propose a novel method for single RS image SR (SRSISR) based on stratified dense sampling to effectively extract image features. Specifically, the proposed SR dense-sampling residual attention network (SRDSRAN) combines dense sampling and residual learning to improve multilevel feature fusion and gradient propagation and employs local and global attentions to learn important features and long-range interdependence in the channel and spatial dimensions. Meanwhile, we also devise a discriminator model using local and global attentions and with the loss function integrating ${L}_{1}$ pixel loss, ${L}_{1}$ perceptual loss, and relativistic adversarial loss to obtain the perceptually realistic images. Besides, we introduce a chain training to promote performance and expedite the training process for large-scale SR. Experimental results on UC Merced image and other multispectral data demonstrated that our SRDSRAN outperformed the current state-of-the-art methods quantitatively and in visual quality and obtained a higher classification accuracy in scene classification, proving its potential for applications with other downstream tasks. The code of SRADSGAN will be available at https://github.com/Meng-333/SRADSGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助wuniuniu采纳,获得10
刚刚
Hello应助一颗馒头采纳,获得10
1秒前
2秒前
3秒前
3秒前
3秒前
在水一方应助稀饭采纳,获得10
3秒前
6秒前
司徒文青发布了新的文献求助10
6秒前
斯文明杰发布了新的文献求助10
7秒前
甜蜜冰颜发布了新的文献求助10
7秒前
khurram发布了新的文献求助10
10秒前
10秒前
简单的大白完成签到 ,获得积分10
11秒前
阿七完成签到,获得积分10
13秒前
mieao发布了新的文献求助10
13秒前
一颗馒头发布了新的文献求助10
13秒前
14秒前
研友_VZG7GZ应助靓丽谷南采纳,获得10
14秒前
Hello应助斯文明杰采纳,获得10
16秒前
zho发布了新的文献求助10
16秒前
SciGPT应助khurram采纳,获得10
17秒前
今天只做一件事应助khurram采纳,获得10
17秒前
传统的斓完成签到,获得积分10
21秒前
科研通AI5应助花花521采纳,获得10
21秒前
写不出来发布了新的文献求助10
23秒前
25秒前
彭于晏应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
Cherish应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
joker_k应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
27秒前
情怀应助科研通管家采纳,获得10
27秒前
qiao应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385