Single Remote Sensing Image Super-Resolution via a Generative Adversarial Network With Stratified Dense Sampling and Chain Training

计算机科学 人工智能 采样(信号处理) 图像分辨率 图像(数学) 鉴别器 比例(比率) 像素 符号 特征(语言学) 残余物 模式识别(心理学) 数学 计算机视觉 算法 地图学 算术 探测器 语言学 哲学 滤波器(信号处理) 地理 电信
作者
Fanen Meng,Sensen Wu,Yadong Li,Zhe Zhang,Tian Feng,Renyi Liu,Zhenhong Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-22 被引量:7
标识
DOI:10.1109/tgrs.2023.3344112
摘要

Super-resolution (SR) methods have significantly contributed to the improvement of the spatial resolution of remote sensing (RS) images. The development of deep learning empowers novel methods to learn informative feature representation from massive low-resolution (LR) and high-resolution (HR) image pairs. Conventional RS image SR methods, however, may fail in large-scale ( $\times 8$ and $\times 9$ ) SR tasks. Specifically, a larger scale factor corresponds to less information in LR images, which is a considerable challenge to SR. To address the issue, we propose a novel method for single RS image SR (SRSISR) based on stratified dense sampling to effectively extract image features. Specifically, the proposed SR dense-sampling residual attention network (SRDSRAN) combines dense sampling and residual learning to improve multilevel feature fusion and gradient propagation and employs local and global attentions to learn important features and long-range interdependence in the channel and spatial dimensions. Meanwhile, we also devise a discriminator model using local and global attentions and with the loss function integrating ${L}_{1}$ pixel loss, ${L}_{1}$ perceptual loss, and relativistic adversarial loss to obtain the perceptually realistic images. Besides, we introduce a chain training to promote performance and expedite the training process for large-scale SR. Experimental results on UC Merced image and other multispectral data demonstrated that our SRDSRAN outperformed the current state-of-the-art methods quantitatively and in visual quality and obtained a higher classification accuracy in scene classification, proving its potential for applications with other downstream tasks. The code of SRADSGAN will be available at https://github.com/Meng-333/SRADSGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
完美世界应助超帅的半蕾采纳,获得10
3秒前
停云濛濛完成签到 ,获得积分10
4秒前
5秒前
8秒前
jzh发布了新的文献求助10
11秒前
Mindray完成签到,获得积分10
12秒前
13秒前
Emma发布了新的文献求助10
13秒前
13秒前
领导范儿应助小乔采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
星辰大海应助酷酷问薇采纳,获得10
17秒前
17秒前
xmy完成签到,获得积分10
17秒前
18秒前
orixero应助ggdio采纳,获得10
18秒前
飘逸小蚂蚁完成签到 ,获得积分10
18秒前
田様应助panpan采纳,获得10
19秒前
HI发布了新的文献求助10
19秒前
20秒前
风清扬应助浪里小白龙采纳,获得30
20秒前
谢金祥发布了新的文献求助10
20秒前
安哥拉发布了新的文献求助10
21秒前
QQ发布了新的文献求助10
22秒前
paltahun发布了新的文献求助10
22秒前
23秒前
Emma完成签到,获得积分10
23秒前
Nicole应助奶油小饼干采纳,获得10
23秒前
星辰发布了新的文献求助10
24秒前
24秒前
ztt完成签到 ,获得积分10
25秒前
扎心应助读研要显贵采纳,获得10
26秒前
26秒前
勤劳傲安发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284500
求助须知:如何正确求助?哪些是违规求助? 3812052
关于积分的说明 11941096
捐赠科研通 3458628
什么是DOI,文献DOI怎么找? 1896754
邀请新用户注册赠送积分活动 945452
科研通“疑难数据库(出版商)”最低求助积分说明 849221