亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A mechanism-guided machine learning method for mapping gapless land surface temperature

遥感 无缝回放 机制(生物学) 计算机科学 环境科学 地质学 物理 量子力学 操作系统
作者
Jun Ma,Huanfeng Shen,Menghui Jiang,Liupeng Lin,C.‐I. Meng,Chao Zeng,Huifang Li,Penghai Wu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:303: 114001-114001 被引量:7
标识
DOI:10.1016/j.rse.2024.114001
摘要

More accurate, spatio-temporally, and physically consistent land surface temperature (LST) estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a mechanism-guided ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable mechanistic guidance is incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which only uses remote sensing data as input, serves as the pure ML model. Mechanistic guidance (MG) is coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the MG-LGBM model, which incorporates surface energy balance (SEB) guidance underlying the data in CLM-LST modeling within a biophysical framework. Results indicate that, MG-LGBM model shows a good accuracy for the sample-based validation, with a root-mean-square error of 1.23–2.03 K, and a Pearson correlation coefficient of 0.99. Validation with four independent ground measurements shows that MG-LGBM can generate clear-sky LST that is comparable to the original Moderate Resolution Imaging Spectroradiometer- (MODIS) LST under fully clear-sky conditions and can correct for the likely cloud-contaminated LST pixels. The generated LST also presents a high accuracy (RMSE = 2.91–3.66 K and R = 0.97–0.98) under cloudy-sky conditions. Compared with a pure mechanistic method and pure ML methods, the MG-LGBM model improves the prediction accuracy and mechanistic interpretability of LST. It also demonstrates a good extrapolation ability in the regions without valid samples, suggesting that the predictions of MG-LGBM model not only exhibit low errors on the training dataset but also align consistently with the known mechanistic laws in the unlabeled set. Compared with other popular ML methods and sophisticated gapless products, the MG-LGBM model delivers a superior validation accuracy and image quality. The proposed method represents an innovative way to map accurate and mechanistically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yeahshine发布了新的文献求助10
1秒前
1秒前
袁青寒发布了新的文献求助10
1秒前
2秒前
赶路人发布了新的文献求助10
4秒前
搜集达人应助大男采纳,获得20
8秒前
赘婿应助梅仑西西采纳,获得10
8秒前
福明明完成签到,获得积分10
9秒前
聪慧的凝海完成签到 ,获得积分10
14秒前
xinnng完成签到,获得积分10
17秒前
赶路人完成签到,获得积分10
19秒前
老鐵完成签到,获得积分10
20秒前
梅仑西西完成签到,获得积分10
25秒前
lvlei发布了新的文献求助10
38秒前
44秒前
刻苦努力学习的m某完成签到,获得积分10
44秒前
lvlei完成签到,获得积分20
52秒前
56秒前
Kirietoan完成签到,获得积分10
57秒前
57秒前
CHENCHEN完成签到,获得积分10
59秒前
我是老大应助袁青寒采纳,获得10
1分钟前
wanci应助袁青寒采纳,获得10
1分钟前
隐形曼青应助袁青寒采纳,获得10
1分钟前
Ava应助袁青寒采纳,获得10
1分钟前
kkk完成签到,获得积分20
1分钟前
1分钟前
CHENCHEN发布了新的文献求助20
1分钟前
kkk发布了新的文献求助10
1分钟前
1分钟前
非洲大象发布了新的文献求助10
1分钟前
霸气凝云发布了新的文献求助10
1分钟前
单薄天宇应助健壮雨采纳,获得10
1分钟前
土豪的灵竹完成签到 ,获得积分10
1分钟前
1分钟前
感动白开水完成签到,获得积分10
1分钟前
1分钟前
斯寜完成签到,获得积分0
1分钟前
非洲大象完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244063
捐赠科研通 3045364
什么是DOI,文献DOI怎么找? 1671645
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759483